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The minimum covariance determinant (MCD) estimator is a highly robust
estimator of multivariate location and scatter. It can be computed efficiently
with the FAST-MCD algorithm of Rousseeuw and Van Driessen. Since estimating
the covariance matrix is the cornerstone of many multivariate statistical methods,
the MCD has also been used to develop robust and computationally efficient
multivariate techniques.

In this paper, we review the MCD estimator, along with its main properties such
as affine equivariance, breakdown value, and influence function. We discuss its
computation, and list applications and extensions of the MCD in theoretical and
applied multivariate statistics.  2009 John Wiley & Sons, Inc. WIREs Comp Stat 2010 2 36–43

The minimum covariance determinant (MCD)
estimator is one of the first affine equivariant and

highly robust estimators of multivariate location and
scatter.1,2 Being resistant to outlying observations,
makes the MCD very helpful in outlier detection.
Although already introduced in 1984, its main
use has only started since the introduction of the
computationally efficient FAST-MCD algorithm of
Rousseeuw and Van Driessen.3 Since then, the MCD
has been applied in numerous fields such as medicine,
finance, image analysis, and chemistry. Moreover, the
MCD has also been used to develop many robust
multivariate techniques, such as principal component
analysis, factor analysis, and multiple regression.

DESCRIPTION OF THE MCD
ESTIMATOR

Motivation
In the multivariate location and scatter setting we
assume that the data are stored in an n × p data
matrix XXX = (xxx1, . . . , xxxn)t with xxxi = (xi1, . . . , xip)t the
ith observation. Hence n stands for the number of
objects and p for the number of variables.

To illustrate we first consider a bivariate data
set, hence p = 2. We consider the wine data set,
available in Ref 4 and also analyzed in Ref 5. The
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data set contains the quantities of 13 constituents
found in three types of Italian wines. We consider
the first group containing 59 wines, and focus on the
constituents ‘malic acid’ and ‘proline’. A scatter plot
of the data is shown in Figure 1, together with the
classical and the robust 97.5% tolerance ellipse.

The classical tolerance ellipse is defined as the
set of p-dimensional points xxx whose Mahalanobis
distance

MD(xxx) =
√

(xxx − x̄xx)tSSS−1(xxx − x̄xx) (1)

equals
√

χ2
p,0.975. We denote χ2

p,α as the α-quantile of

the χ2
p distribution. The Mahalanobis distance MD(xxxi)

should tell us how far away xxxi is from the center of
the cloud, relative to the size of the cloud. Here
x̄xx is the sample mean and SSS the sample covariance
matrix. We see that this tolerance ellipse tries to
encompass all observations. Consequently none of
the Mahalanobis distances, shown in Figure 2(a), is
exceptional large and only three observations would
be considered as mild outliers. On the other hand, the
robust tolerance ellipse in Figure 1 which is based on
the robust distances

RD(xxx) =
√

(xxx − µ̂MCD)t�̂
−1
MCD(xxx − µ̂MCD) (2)

is much smaller and encloses the regular data points.
Here, µ̂MCD is the MCD estimate of location, and
�̂MCD the MCD covariance estimate. The robust
distances exposed in Figure 2(b) now clearly spot eight
outliers and one mild outlier (observation 3).

This illustrates the masking effect: classical
estimates can be so highly affected by outlying
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FIGURE 1 | Bivariate wine data with classical and robust tolerance
ellipse.

values that diagnostic tools such as the Mahalanobis
distances can no longer detect the outliers. To get a
reliable analysis of these data robust estimators are
required that can resist possible outliers. The MCD
estimator of location and scatter is such a robust
estimator.

Definition
Denote [.] the floor function. The raw MCD estimator
with parameter [(n + p + 1)/2] ≤ h ≤ n defines the
following location and dispersion estimates:

1. µ̂0 is the mean of the h observations for which
the determinant of the sample covariance matrix
is minimal.

2. �̂0 is the corresponding covariance matrix
multiplied by a consistency factor c0.

Note that the MCD estimator can only be computed
when h > p, otherwise the covariance matrix of any
h-subset will be singular. Since h ≥ [(n + 2)/2], this
condition is certainly satisfied when n ≥ 2p. To avoid
the curse of dimensionality it is however recommended
that n > 5p. To obtain consistency at the normal
distribution, the consistency factor c0 equals α/Fχ2

p+2

(χ2
p,α) with α = limn→∞ h(n)/n.6 Also a finite-sample

correction factor can be added.7

The MCD estimator is designed for elliptically
symmetric unimodal distributions. A multivariate
distribution with parameters µ ∈ IRp and � a positive
definite matrix of size p is called elliptically symmetric
and unimodal if there exists a strictly decreasing
function g such that the density can be written in
the form

f (xxx) = 1√|�| g((xxx − µ)t�−1(xxx − µ)). (3)

Consistency of the raw MCD estimator of location
and scatter at elliptical models, as well as asymptotic
normality of the MCD location estimator has been
proved in Ref 8.

The MCD estimator is most robust by taking h =
[(n + p + 1)/2]. This corresponds at the population
level with α = 0.5. But unfortunately the MCD then
suffers from low efficiency at the normal model. For
example, if α = 0.5, the asymptotic relative efficiency
of the diagonal elements of the MCD scatter matrix
with regard to the sample covariance matrix is only
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FIGURE 2 | (a) Mahalanobis distances and (b) robust distances for the bivariate wine data.
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6% when p = 2, and 20.5% when p = 10. This
efficiency can be increased by considering a larger
α such as α = 0.75. This yields relative efficiencies
of 26.2% for p = 2 and 45.9% for p = 10.6 On the
other hand this choice of α decreases the robustness
toward possible outliers.

In order to increase the efficiency while
retaining high robustness, one can apply reweighted
estimators.9,10 For the MCD this yields the estimates:

µ̂MCD =
∑n

i=1 W(d2
i )xxxi∑n

i=1 W(d2
i )

(4)

�̂MCD = c1
1
n

n∑
i=1

W(d2
i )(xxxi − µ̂MCD)(xxxi − µ̂MCD)t

(5)

with di =
√

(xxx − µ̂0)t�̂
−1
0 (xxx − µ̂0) and W an appro-

priate weight function. The constant c1 is again a
consistency factor. A simple yet effective choice for W
is W(d2) = I(d2 ≤ χ2

p,0.975). This is the default choice
in current implementations in S-PLUS, R, SAS, and
Matlab. If we take α = 0.5 this reweighting step
increases the efficiency up to 45.5% for p = 2 and
82% for p = 10. The example of the wine data also
uses the reweighted MCD estimator with α = 0.75,
but the results were similar for smaller values of α.

Remark that based on the MCD covariance
matrix a robust correlation matrix can also be con-
structed. For all 1 ≤ i �= j ≤ p, the robust correlation
between variables Xi and Xj can be estimated by

rij = sij√siisjj
(6)

with sij the (i, j)th element of the MCD covariance
estimate.

Outlier detection
As illustrated in Figure 3, the robust MCD estimator is
very helpful to detect outliers in multivariate data. As
the robust distances (Eq. (2)) are not sensitive to the
masking effect, they can be used to flag the outliers.11

This becomes even more useful at data sets in more
than two (or three) dimensions, which become difficult
to visualize.

We illustrate the outlier detection potential of the
MCD on the full wine data set, with p = 13 variables.
The distance--distance plot of Figure 3 now plots
the robust distances based on the MCD versus the
Mahalanobis distances.3 From the robust analysis we
see that seven observations clearly stand out, whereas
the classical analysis does not flag any of the wines.

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

Mahalanobis distance

R
ob

us
t d

is
ta

nc
e

MCDCOV

263 345 51

20

47

224246
4044

FIGURE 3 | Distance–distance plot of the full wine data.

Note that the cutoff value
√

χ2
p,0.975 is based on

the asymptotic distribution of the robust distances,
and often flags too many observations as outlying.
The true distribution of the robust distances can
be better approximated by an F-distribution, see
Ref. 12.

PROPERTIES

Affine equivariance
The MCD estimator of location and scatter is affine
equivariant. This means that for any nonsingular
matrix AAA and constant vector bbb ∈ IRp

µ̂MCD(AAAXXX + bbb) = AAAµ̂MCD(XXX) + bbb (7)

�̂MCD(AAAXXX + bbb) = AAA�̂MCD(XXX)AAAt
. (8)

This property follows from the fact that for each
subset of size h, denoted as XXXh, the determinant of the
covariance matrix of the transformed data equals

|SSS(AAAXXXh)| = |AAASSS(XXXh)AAAt| = |AAA|2|SSS(XXXh)|. (9)

Hence, the optimal h-subset (which minimizes
|SSS(AAAXXXh)|) remains the same as for the original data
(which minimizes |SSS(XXXh)|), and its covariance matrix
is appropriately transformed. Similarly the affine
equivariance of the raw MCD location estimator
follows from the equivariance of the sample mean.
Finally we note that the robust distances di =√

(xxx − µ̂0)t�̂
−1
0 (xxx − µ̂0) are affine invariant, which

implies that the reweighted estimator is again
equivariant.
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Affine equivariance implies that the estimator
transforms well under any nonsingular reparametriza-
tion of the space of the xxxi. Consequently, the data
might be rotated, translated, or rescaled (for example
through a change of the measurement units) without
affecting the outlier detection diagnostics.

The MCD is one of the first high-breakdown
affine equivariant estimators of location and scatter,
and was only preceded by the Stahel-Donoho
estimator.13,14 Together with the MCD, the minimum
volume ellipsoid estimator was introduced1,2 but this
estimator is not asymptotically normal and it is more
difficult to compute than the MCD.

Breakdown value
The breakdown value of an estimator measures the
smallest fraction of observations that need to be
replaced by arbitrary values to carry the estimate
beyond all bounds. Denote XXXn,m as the set obtained
by replacing m data points xxxi1 , . . . , xxxim of XXXn by
arbitrary values. For a multivariate location estimator
Tn the breakdown value is then defined as:

ε∗
n(Tn; XXXn) =1

n
min {m ∈ {1, . . . , n} :

sup
m

||Tn(XXXn) − Tn(XXXn,m)|| = +∞
}

.

(10)

For a multivariate estimator of scatter we have

ε∗
n(Cn; XXXn) =1

n
min {m ∈ {1, . . . , n} :

sup
m

max
i

{| log(λi(Cn(XXXn)))

− log(λi(Cn(XXXn,m)))|}
}

, (11)

with 0 < λp(Cn) ≤ . . . ≤ λ1(Cn) the eigenvalues of Cn.
This means that we consider a scatter estimator to be
broken whenever any of the eigenvalues can become
arbitrary large or arbitrary close to 0.

Let k(XXXn) denote the maximum number of
observations in the data set lying on a hyperplane
of IRp. Assume k(XXXn) < h, then for the raw MCD
estimator of location and scatter, we have that15

ε∗
n(µ̂0; XXXn) = ε∗

n(�̂0; XXXn) = min(n − h + 1, h − k(XXXn))
n

.

(12)

If the data are sampled from a continuous distri-
bution, then almost surely k(XXXn) = p which yields
ε∗

n(µ̂0; XXXn) = ε∗
n(�̂0; XXXn) = min(n − h + 1, h − p)/n,

and consequently any [(n + p)/2] ≤ h ≤ [(n + p +
1)/2] gives the maximal breakdown value [(n − p +
2)/2]. This is also the highest possible breakdown
value for affine equivariant scatter estimators16 at
data sets that satisfy k(XXXn) = p (this is also known as
general position). Also for affine equivariant location
estimators the upper bound on the breakdown value is
[(n − p + 2)/2] under natural regularity conditions.17

Note that in the limit limn→∞ ε∗
n = min(1 − α, α)

which is maximal for α = 0.5.
Finally, we remark that the breakdown value of

the reweighted MCD estimator µ̂MCD and �̂MCD is
not lower than the breakdown value of the raw MCD
estimator, as long as the weight function W used in
Eq. (4) is bounded and becomes zero for large di.9

Influence function
The influence function of an estimator measures the
infinitesimal effect of point contamination on the
estimator.18 It is defined at the population level, hence
it requires the functional form of the estimator T,
which maps any distribution F on a value T(F) in
the parameter space. For multivariate location, this
parameter space is IRp, whereas for multivariate scatter
estimators the parameter space corresponds with all
positive definite matrices of size p. The influence
function of the estimator T at the distribution F in a
point xxx is then defined as:

IF(xxx, T, F) = lim
ε→0

T(Fε) − T(F)
ε

(13)

with Fε = (1 − ε)F + ε�x a contaminated distribution
with point mass in xxx.

The influence function of the raw and the
reweighted MCD has been studied in Ref. 6 and
appears to be bounded. This is a desired property
for robust estimators. It reflects the robustness of
the estimator toward point contamination. At the
standard Gaussian distribution, the influence function
of the MCD location estimator becomes zero for
all xxx with ‖xxx‖2 > χ2

p,α, hence large outliers do not
influence the estimates. The same happens at the off-
diagonal elements of the MCD scatter estimator. At
the diagonal elements on the other hand the influence
function remains constant (different from zero) when
‖xxx‖2 is sufficiently large. This reflects that the outliers
still have a bounded influence of the estimator.
Moreover the influence functions are smooth, except
at those xxx with ‖xxx‖2 = χ2

p,α. The reweighted MCD
estimator has an additional jump in ‖xxx‖2 = χ2

p,0.975
because of the discontinuity of the weight function.
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Univariate MCD
For univariate data, the MCD estimates reduce to
the mean and the variance of the h-subset with
smallest variance. They can be computed in O(n log n)
time by considering contiguous h-subsets and by
computing their mean and variance recursively.19

Their consistency and asymptotic normality is proved
in Ref 2,20. For h = [n/2] + 1 the MCD location
estimator has breakdown value [(n + 1)/2]/n, and the
MCD scale estimator [n/2]/n. These are the maximal
values that can be attained by affine equivariant
estimators.21 The univariate MCD influence functions
are also bounded, see6 for details. The maxbias curve
(which measures the maximal asymptotic bias at
a certain fraction of contamination) is studied in
Ref 22,23.

Note that the univariate MCD location esti-
mator corresponds with the univariate least trimmed
squares (LTS) estimator,1 defined by

min
µ

h∑
i=1

(r2
µ)i:n (14)

where (r2
µ)1:n ≤ (r2

µ)2:n ≤ . . . ≤ (r2
µ)n:n are the ordered

squared residuals (xi − µ)2.

COMPUTATION

The exact MCD estimator is very hard to compute, as

it requires the evaluation of all
(n
h

)
subsets of size h.

In Ref. 3 the FAST-MCD algorithm is developed to
efficiently compute the MCD. The key component of
the algorithm is the C-step:
Theorem. Take XXX = {xxx1, . . . , xxxn} and let H1 ⊂
{1, . . . , n} be an h-subset, that is |H1| = h. Put µ̂1
and �̂1 the empirical mean and covariance matrix
of the data in H1. If det(�̂1) �= 0 define the relative
distances

d1(i) :=
√

(xxxi − µ̂1)t�̂
−1
1 (xxxi − µ̂1) for i = 1, . . . , n.

(15)

Now take H2 such that {d1(i); i ∈ H2} :=
{(d1)1:n, . . . , (d1)h:n} where (d1)1:n ≤ (d1)2:n ≤ · · · ≤
(d1)n:n are the ordered distances, and compute µ̂2
and �̂2 based on H2. Then

det(�̂2) ≤ det(�̂1) (16)

with equality if and only if µ̂2 = µ̂1 and �̂2 = �̂1.
If det(�̂1) > 0, the C-step thus yields a new

h-subset with lower covariance determinant very

easily. Note that the C stands for ‘concentration’ since
�̂2 is more concentrated (has a lower determinant)
than �̂1. The condition det(�̂1) �= 0 in the C-
step theorem is not a real restriction because if
det(�̂1) = 0 the minimal objective value is already
reached.

C-steps can be iterated until det(�̂new) = 0 or
det(�̂new) = det(�̂old). The sequence of determinants
obtained in this way must converge in a finite number
of steps because there are only finitely many h-subsets.
However, there is no guarantee that the final value
det(�̂new) of the iteration process is the global min-
imum of the MCD objective function. Therefore, an
approximate MCD solution can be obtained by taking
many initial choices of H1, applying C-steps to each
and keeping the solution with lowest determinant.

To construct an initial subset H1, a random
(p + 1)-subset J is drawn and µ̂0 := ave(J) and
�̂0 := cov(J) are computed [If det(�̂0) = 0 then
J can be extended by adding observations until
det(�̂0) > 0]. Then, for i = 1, . . . , n the distances
d2

0(i) := (xxxi − µ̂0)t�̂
−1
0 (XXXi − µ̂0) are computed and

sorted. The initial H1 subset then consists of the h
observations with smallest distance d0. This method
yields better initial subsets than by drawing random
h-subsets directly, because the probability of drawing
an outlier-free subset is much higher when drawing
(p + 1)-subsets than with h-subsets.

The FAST-MCD algorithm contains several
computational improvements. As each C-step involves
the calculation of a covariance matrix, its determinant
and the corresponding distances using fewer C-steps
considerably improves the speed of the algorithm.
It turns out that after two C-steps, many runs that
will lead to the global minimum already have a
considerably smaller determinant. Therefore, the
number of C-steps is reduced by applying only two
C-steps on each initial subset and selecting the 10
different subsets with lowest determinants. Only
for these 10 subsets further C-steps are taken until
convergence.

This procedure is very fast for small sample
sizes n, but when n grows the computation time
increases because of the n distances that need to be
calculated in each C-step. For large n FAST-MCD uses
a partitioning of the data set, which avoids doing all
the calculations in the entire data.

Note that the FAST-MCD algorithm itself is
affine equivariant. Consistency and breakdown of the
approximate algorithm is discussed in Ref 24.

Implementations of the FAST-MCD algorithm
are available in the package S-PLUS (as the built-
in function cov.mcd), in R (as part of the packages
rrcov, robust and robustbase), in SAS/IML Version 7,
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and SAS Version 9 (in PROC ROBUSTREG).
A stand-alone program can be downloaded from the
website www.agoras.ua.ac.be, as well as a Matlab
version. A Matlab function is also part of LIBRA, a
Matlab Library for Robust Analysis25 which can be
downloaded from wis.kuleuven.be/stat/robust. More-
over it is available in the PLS Toolbox of Eigenvector
Research (www.eigenvector.com). Note that some
functions use α = 0.5 as default value, yielding a
breakdown value of 50%, whereas other implemen-
tations use α = 0.75.

APPLICATIONS
Many multivariate statistical methods rely on covari-
ance estimation; hence the MCD estimator is well
suited to construct robust multivariate techniques.
Moreover, the trimming idea of the MCD has
been generalized toward many new estimators.
Here, we enumerate some applications and exten-
sions.

The MCD analog in regression is the least
trimmed squares regression estimator1 which mini-
mizes the sum of the h-smallest squared residuals.
Equivalently, the LTS estimate corresponds with
the least squares fit of the h-subset with smallest
squared residuals. The FAST-LTS algorithm uses sim-
ilar techniques as FAST-MCD.26 The diagnostic plot
introduced in Ref 11 exposes the regression resid-
uals versus the robust distances of the predictors,
and is very useful for outlier classification. These
robust distances are, e.g., also useful for robust linear
regression,27,28 regression with continuous and cate-
gorical regressors29 and for logistic regression.30,31

In the multivariate regression setting (with sev-
eral response variables) the MCD can be directly
used to obtain MCD regression,32 whereas MCD
applied to the residuals leads to multivariate LTS
estimation.33

Covariance estimation is also important in prin-
cipal component analysis and related methods. For
low-dimensional data (with n < 5p) the principal
components can be obtained as the eigenvectors of
the MCD covariance matrix,34 whereas robust factor

analysis based on the MCD has been studied in
Ref 35. Robust canonical correlation is proposed in
Ref 36. For high-dimensional data, projection pur-
suit ideas combined with the MCD results in the
so-called ROBPCA method37,38 for robust PCA. This
method has led to the construction of robust princi-
pal component regression,39 and robust partial least
squares regression,40,41 together with appropriate out-
lier maps. The LTS-subspace estimator42 generalizes
LTS regression to subspace estimation and orthogonal
regression.

An MCD-based alternative to the Hotelling test
was provided in Ref. 43. A robust bootstrap for the
MCD is proposed in Ref. 44. The computation of the
MCD with missing values is explored in Ref 45–47.
Classification (or discriminant analysis) based on
MCD is studied in Ref 48,49, whereas an alterna-
tive for high-dimensional data is developed in Ref. 50.
Robust clustering is handled in Ref 51–53.

The trimming procedure of the MCD has
inspired the construction of maximum trimmed like-
lihood estimators,54–57 trimmed k-means,58–60 least
weighted squares regression61 and minimum weighted
covariance determinant estimation.15 The idea of the
C-step in the MCD algorithm has been extended to
S-estimators.62

Applications of the MCD are numerous.
We mention recent applications in finance and
econometrics,63,64 medicine,65 quality control,66

geophysics,67 image analysis68,69 and chemistry,70 but
this list is far from complete.

CONCLUSION

In this paper we have reviewed the MCD estima-
tor of multivariate location and scatter. We have
illustrated its resistance to outliers on an example
of real data. Its main properties concerning robust-
ness, efficiency, and equivariance were enumerated,
and computational aspects were described. Finally we
have provided a detailed reference list with applica-
tions and generalizations of the MCD in theoretical
and applied research.
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