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Abstract

The kurtosis coefficient is often regarded as a measure of the tail heaviness of a

distribution relative to that of the normal distribution. However, it also measures

the peakedness of a distribution, hence there is no agreement on what kurtosis

really estimates. Another disadvantage of the kurtosis is that its interpretation and

consequently its use is restricted to symmetric distributions. Moreover, the kurtosis

coefficient is very sensitive to outliers in the data. To overcome these problems,

several measures of left and right tail weight for univariate continuous distributions

are proposed. They can be applied to symmetric as well as asymmetric distributions

that do not need to have finite moments. Their interpretation is clear and they are

robust against outlying values. The breakdown value and the influence functions

of these measures and the resulting asymptotic variances are discussed and used

to construct goodness-of-fit tests. Simulated as well as real data are employed for

further comparison of the proposed measures.
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1 Introduction

The classical kurtosis coefficient is introduced in many textbooks and is often regarded as

a measure of the tail heaviness of a distribution relative to that of the normal distribution.

For any distribution F with finite moments, it is defined as

γ2(F ) =
µ4(F )

µ2(F )2
, (1.1)

where µ4 and µ2 denote the fourth and the second central moment of F , i.e.

µ2 = EF (X − EF (X))2 and µ4 = EF (X − EF (X))4

with X ∼ F . The finite-sample kurtosis will be denoted by b2.

But the kurtosis coefficient has several drawbacks. As been stated in [3], although its wide-

spread use, there is no agreement on what kurtosis really measures. Many authors confirm,

including Ruppert [24], that kurtosis measures both peakedness and tail weight, because if

one moves probability mass from the flanks to the center of a distribution, then to keep scale

fixed one must also move mass from the flanks to the tail. Moreover, theoretical considerations

of kurtosis often have been restricted to symmetric distributions, because of its intrinsic

comparison with the symmetric normal distribution (e.g. [8]). Finally, because the kurtosis

is based on moments of the data, b2 is very sensitive to outlying values. This is reflected in

the unbounded influence function of γ2 [24].

In this paper we introduce several measures of left and right tail weight for univariate con-

tinuous distributions. They can be applied to symmetric as well as asymmetric distributions.

Their interpretation is clear and they are robust against outlying values. Note that several

other authors have proposed robust measures of kurtosis, but they were only defined for

symmetric distributions or merely measured peakedness instead of tail weight ([10], [18], [9]

and [25]).

In Section 2 we define the new tail weight measures and derive some elementary properties.

We will prove that they satisfy the anti-skewness ordering of MacGillivray and Balanda [17].

This is used to compare distributions according to the fatness or weakness of their tails [19].

In Section 3 we compute the breakdown value, the influence function and the asymptotic
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variance of the proposed measures. Section 4 studies the finite-sample behavior of the esti-

mators, both at contaminated and uncontaminated data sets. Some examples of real data

sets are analyzed in Section 5, and Section 6 contains some conclusions. Some of the proofs

of the theorems are collected in the Appendix.

2 Measures of tail weight

We will define tail weight measures for continuous univariate distributions F . Their finite-

sample versions for an i.i.d. sample Xn = {x1, . . . , xn} from F then follow in a straightforward

way from the population definitions.

We define left and right tail measures as measures of skewness that are applied to the half

of the probability mass lying to the left, respectively the right, side of the median of F ,

denoted as mF = F−1(0.5). In [5] a comparison is made between several robust skewness

measures. The three most interesting skewness measures (considering accuracy, robustness

and computational complexity) were the octile skewness (OS), the quartile skewness (QS)

and the medcouple (MC). The octile and the quartile skewness originate from Hinkley’s [13]

class of skewness measures:

γ1(F, p) =
(Q(1− p)−Q(0.5))− (Q(0.5)−Q(p))

Q(1− p)−Q(p)

for 0 < p < 1/2 and Q(p) = QF (p) = F−1(p) the quantile function. The octile skewness takes

p = 1/8 whereas the quartile skewness is defined as γ1(F, 1/4). When we apply −γ1(F, p)

to the left half (x < mF ), and γ1(F, 1 − p) = γ1(F, q) to the right half (x > mF ) of F , we

obtain the Left Quantile Weight (LQW) and the Right Quantile Weight (RQW):

LQWF (p) = −
Q(1−p

2
) + Q(p

2
)− 2Q(0.25)

Q(1−p
2

)−Q(p
2
)

and

RQWF (q) =
Q(1+q

2
) + Q(1− q

2
)− 2Q(0.75)

Q(1+q
2

)−Q(1− q
2
)

in which 0 < p < 1
2

and 1
2

< q < 1. To retain a reasonable amount of robustness we will study

LQWF (0.125), LQWF (0.25), RQWF (0.875) and RQWF (0.75). Note that the sample versions
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LQWn(0.125) etc. are easily found by using the quantiles of Fn, the empirical distribution

function of Xn.

The medcouple is extensively studied in [6]. It is defined as

MC(F ) = med
x1≤mF≤x2

h(x1, x2)

with x1 and x2 sampled from F and the kernel function h given by

h(xi, xj) =
(xj −mF )− (mF − xi)

xj − xi

.

As with the QW alternatives, we can easily apply the MC to one side of the distribution,

leading to the Left Medcouple (LMC) and to the Right Medcouple (RMC), defined as

LMCF = −MC(x < mF ) and RMCF = MC(x > mF ).

Let qF,1 = q1 = Q(0.25) be the first quartile of F , denote qF,3 = q3 = Q(0.75) the third

quartile of F and let I be the indicator function, then with

HF,l(u) = 16
∫ mF

q1

∫ q1

−∞
I
(
−x2 + x1 − 2q1

x2 − x1

≤ u
)

dF (x1)dF (x2) (2.1)

we obtain the shorter formulation

LMCF = H−1
F,l (0.5).

Analogously, we have with

HF,r(u) = 16
∫ +∞

q3

∫ q3

mF

I
(

x2 + x1 − 2q3

x2 − x1

≤ u
)

dF (x1)dF (x2) (2.2)

the expression

RMCF = H−1
F,r(0.5).

Similar as in [6], we can simplify (2.1) to

HF,l(u) = 16
∫ mF

q1

F

(
x2(−u− 1) + 2q1

−u + 1

)
dF (x2)

and (2.2) to

HF,r(u) = 16
∫ q3

mF

F

(
x2(u + 1)− 2q3

u− 1

)
dF (x2).
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By using MCn, the finite-sample version of MC, we obtain the finite-sample versions LMCn

and RMCn. Note that they can be seen as estimators of LMCF and RMCF respectively.

Their computation can be performed in O(n log n) time due to the fast algorithm described

in [6].

Remark that both the quantile and the medcouple tail weight measures only depend on

quantiles and consequently can be computed at any distribution, even without finite mo-

ments. Moreover, the LMC and RMC measure do not require the choice of any additional

parameter, whereas for the LQW (resp. RQW) measures only p (resp. q) has to be fixed

in advance, depending on the degree of robustness one is willing to attain. A different ap-

proach to estimate the tail behavior of a distribution is studied in the field of extreme value

analysis. In this field, the key quantity is the extreme-value index γ, which allows to classify

distributions into a Fréchet-Pareto type (γ > 0), Gumbel type (γ = 0) or Extremal Weibull

type (γ < 0). Many estimators have been proposed to estimate γ, see e.g. chapter 5 in [1] for

a recent overview. These estimators can yield very accurate results, but as a disadvantage

they always require the selection of the tail fraction on which the estimates are based. This

is often done by minimizing the asymptotic mean squared error, which itself can be hard

to estimate. The computational complexity of these techniques is thus much harder than

the tail weight measures proposed in this paper. Moreover the tail index is not able to dis-

tinguish Gumbel-type distributions such as the log-normal, the logistic, the exponential or

the Weibull distributions. Note that robust estimators for the tail index in the Pareto case

(γ > 0) have been recently proposed in [27] and [28], whereas [7] addresses the problem of

robustly selecting the number of extreme order statistics for the Hill estimator.

Before discussing the robustness properties of our proposed measures, we look at some general

tail weight properties. Let the random variable X have a continuous distribution FX and let

W be any of the defined tail weight measures, let LW be a left tail weight measure and RW

be a right tail weight measure.

Proposition 1 W is location and scale invariant, i.e.

W (FaX+b) = W (FX)

for any a > 0 and b ∈ IR.
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Proposition 2 If we invert a distribution, we have:

LW (F−X) = RW (FX).

Proposition 3 If F is symmetric, then LW (F ) = RW (F ).

Proposition 4 W ∈ [−1, 1].

Properties 1 and 2 follow immediately from the definitions, and imply Property 3. Property 4

is not really required for a tail weight measure, but at least it gives a lower and an upper

bound for any of the tail weights under consideration. A distribution will have a positive

(resp. negative) RW measure if its upper half (half the probability mass larger than the

median) is skewed to the right (resp. the left). Right skewness occurs more frequently than

left skewness, so our RW measures are typically positive. Similarly we obtain a positive

(resp. negative) LW measure if the lower half is skewed to the left (resp. the right). The

measures become zero when the lower half or the upper half is symmetric, as for example

at the uniform distribution. The extreme situation W = −1 or W = 1 will only occur at

degenerate situations. Consider for example a distribution that has half of its mass at zero,

25% of its mass to the left and 25% to the right of zero, which is then also the median of

the distribution. Then both LW and RW will equal one. Analogously we can construct a

distribution with LW = RW = −1 by setting 25% probability mass at the left and at the

right endpoints of the distribution.

The next property tells us whether W respects the anti-skewness ordering of distributions

as defined by MacGillivray and Balanda [17], which is inspired on the kurtosis ordering of

van Zwet [29]. Let F and G be continuous distributions with interval support. Because of

the location invariancy, we can assume that the medians of both distributions collapse, or

mF = mG. Then it is said that G is at least as fat tailed to the left as F if and only if

F ≤l
a G ⇔ G−1(F (x)) is concave for x < mF = mG (2.3)

and G is at least as fat tailed to the right as F if and only if

F ≤r
a G ⇔ G−1(F (x)) is convex for x > mF = mG

both on the support of F .
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Proposition 5 If F ≤l
a G, then LW (F ) ≤ LW (G), and if F ≤r

a G, then RW (F ) ≤
RW (G).

The proof of Property 5 is similar to the proof of Property 4 in [6]. For the left tail weight

measures, it should be noted that because of the scale invariancy we can also transform F

and G such that QF (0.25) = QG(0.25). Analogously for the right tail weight measures we

rescale them such that QF (0.75) = QG(0.75).

More specifically, we can consider Tukey’s class of gh-distributions [14]. When a random

variable Z is standard gaussian distributed, then

Yg,h =


(egZ−1)

g
e

hZ2

2 g 6= 0

Ze
hZ2

2 g = 0

is said to follow a gh-distribution Gg,h with parameters g ∈ IR and h ≥ 0. The parameter

g controls the skewness of the distribution, whereas h effects the tail weight. For g = 0,

the variable Y0,h defines a symmetric distribution with zero skewness, but with increasing

tails as h increases. It is also clear that G−g,h(x) = 1 − Gg,h(−x), hence we will only con-

sider the symmetric and the right-skewed distributions for which g ≥ 0. The densities of

the gh-distributions can only be computed numerically [20]. In Figure 1 we have drawn a

nonparametric density estimate of G0,h and G0.5,h distributions with h varying between 0

and 0.3. We see that h = 0.3 already defines a distribution with very heavy tails, hence in

the sequel we will only consider examples with h ≤ 0.3.
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Fig. 1. Nonparametric density estimates of the G0,h (left panel) and G0.5,h (right panel) distributions

for several values of h between 0 and 0.3.
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It is easy to show that these gh-distributions follow the anti-skewness ordering, as Gg,h1 ≤l
a

Gg,h2 and Gg,h1 ≤r
a Gg,h2 for any h1 ≤ h2. To illustrate this, we have drawn in Figure 2 the

left and right tail weight measures for G0,h and G0.5,h with h ranging from 0 to 0.3. We see

that all the curves are monotone increasing, which is an obvious consequence of the validity

of Property 5 for the studied measures.
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Fig. 2. Monotone behavior of the left and right tail weight measures for G0,h and G0.5,h with h

ranging from 0 to 0.3.

Also in [8] these gh-distributions with g = 0 are explored to study tail weight. In that paper,

a graphical tool (the dF plot) is introduced in order to study elongation [14]. A distribution

is elongated, in some region, if its quantiles change more rapidly there than do the Gaussian

quantiles. The dF -curve allows to compare graphically symmetric distributions. As for the

G0,h distributions it holds that dF (z) = hz2, the curve for any G0,h1 lies completely below

the curve for G0,h2 if h1 ≤ h2 (see also Figure 1 in [8]). This implies that G0,h2 is more

elongated than G0,h1 , which is in line with the anti-skewness ordering based on our measures
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of tail weight. A drawback of this plot is that it is only defined for continuous, unimodal

distributions which are symmetric (about zero). Moreover it does not yield a finite-sample

measure of tail weight.

3 Robustness properties

In this section we study the robustness properties of the proposed measures of tail weight.

In particular, we derive their breakdown value, and their influence function from which the

asymptotic variance follows.

3.1 Breakdown value

The breakdown value of an estimator Tn at a sample Xn measures how many observations

of Xn need to be replaced to make the estimate worthless [23]. For a univariate location

estimator e.g. this means that the absolute value of the estimate becomes arbitrarily large,

whereas we say that a scale estimator breaks down if the estimate becomes arbitrarily large

or close to zero. Since our tail weight measures are bounded by [−1, 1], we define their

finite-sample breakdown value as

ε∗n(Wn; Xn) = min{m

n
; sup

X′
n

|Wn(X ′
n)| = 1},

where the data set X ′
n is obtained by replacing m observations from Xn by arbitrary values.

The asymptotic breakdown value ε∗(W ; F ) is then defined as limn→∞ ε∗n(Wn; Xn) with the

xi sampled from F .

Theorem 1 If the data set Xn is in general position, i.e. no two data points coincide, then

1

n
(dn

8
e − 1) ≤ ε∗n(RMCn; Xn) ≤ 1

n
(dn

8
e+ 1).

Here, dxe denotes the smallest integer larger than or equal to x. The same result holds

for LMCn. The medcouple tail weight measures can thus resist up to 12.5% outliers in the
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data. In a similar way, it can be shown that the left and right quantile tail weight measures

LQWF (0.25) and RQWF (0.75) have an asymptotic breakdown value of 12.5%, while the

LQWF (0.125) and RQWF (0.875) can withstand at most 6.25% of outliers.

3.2 Influence function

The influence function of an estimator T at some distribution F measures the effect on T

when adding a small probability mass at the point x [11]. If ∆x is the point mass in x, then

the influence function is defined as

IF (x, T, F ) = lim
ε↓0

T ((1− ε)F + ε∆x)− T (F )

ε
.

The following theorems give the influence functions of the tail weight measures under study

for any continuous distribution F with density f . To simplify the conditions, we assumed

that f(x) > 0 for all x. Note that Huber [15] showed that the IF of QF (p) = F−1(p) is given

by

IF (x, QF (p), F ) =
p− I(x < QF (p))

f(QF (p))
.

Theorem 2

IF (x, LQW (p), F ) = 2

[(
IF (x, q1, F )− IF (x, Q((1− p)/2), F )

)(
q1 −Q(p/2)

)
−
(
IF (x, Q(p/2), F )− IF (x, q1, F )

)(
Q((1− p)/2)− q1

)]/(
Q((1− p)/2)−Q(p/2)

)2

Theorem 3

IF (x, RQW (q), F ) = 2

[(
IF (x, Q(1− q/2), F )− IF (x, q3, F )

)(
Q((1 + q)/2)− q3)

)
−
(
IF (x, q3, F )−IF (x, Q((1+q)/2), F )

)(
q3−Q(1−q/2)

)]/(
Q((1+q)/2)−Q(1−q/2)

)2

To derive the influence functions of LMC and RMC, we denote

g1,l(x) =
x(−LMC − 1) + 2q1

−LMC + 1
(3.1)

g2,l(x) =
x(−LMC + 1)− 2q1

−LMC − 1
(3.2)
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and analogously g1,r(x) = (x(RMC − 1) + 2q3)/(RMC + 1) and g2,r(x) = (x(RMC + 1)−
2q3)/(RMC − 1). Then it holds that

H
′

F,l(LMC) =
∫ mF

q1

32(q1 − x2)

(−LMC + 1)2
f(g1,l(x2))dF (x2)

and

H
′

F,r(RMC) =
∫ q3

mF

32(q3 − x2)

(RMC − 1)2
f(g2,r(x2))dF (x2).

Theorem 4 Assume that H
′
F,l(LMC) 6= 0. Then

IF (x, LMC, F ) = 1

H
′
F,l

(LMC)

[
1− 16F (g1,l(x))

(
I(x > q1)− I(x > mF )

)
−16

(
F (g2,l(x)− 1

4

)
I(x > g1,l(mF ))I(x < q1)− 4I(x < g1,l(mF ))

−8sgn(x−mF )F (g1,l(mF )) +
(

1
4
− I(x < q1)

)(
4− 32

f(q1)(−LMC+1)

∫mF
q1

f(g1,l(x2))dF (x2)
)]

Theorem 5 Assume that H
′
F,r(RMC) 6= 0. Then

IF (x, RMC, F ) = 1

H
′
F,r(RMC)

[
1− 16F (g2,r(x))

(
I(x > mF )− I(x > q3)

)
−16

(
F (g1,r(x))− 1

2

)
I(x < g2,r(mF ))I(x > q3)− 4I(x < q3)

+8sgn(x−mF )F (g2,r(mF ))−
(

3
4
− I(x < q3)

)(
4− 32

f(q3)(RMC−1)

∫ q3
mF

f(g2,r(x2))dF (x2)
)]

All these influence functions are bounded. Figure 3 shows the influence functions of the

left and right tail weight measures for the standard gaussian distribution G0,0, for the right

skewed G0.5,0 and for the logistic distribution with density function

f(x) =
e−x

(1 + e−x)2
.

We use the logistic distribution here instead of any G0,h distribution because its density

function can be explicitly formulated. The logistic distribution is symmetric around zero

and has fatter tails than the standard gaussian distribution. It will also be considered in

Section 4 where its density is plotted in Figure 4. We see that the influence functions of the

QW alternatives are step functions, whereas the influence functions of the MC alternatives

are continuous, except in q1 for LMC and q3 for RMC. They can be seen as smoothed versions

of the QW alternatives.
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Fig. 3. Influence functions of the left and right tail weight measures for the standard gaussian

distribution (upper), for G0.5,0 (middle) and for the logistic distribution (lower).

3.3 Asymptotic variance

If an estimator T is asymptotically normal at a distribution F, its asymptotic variance

V (T, F ) [11] is given by

V (T, F ) =
∫

IF (x, T, F )2dF (x). (3.3)
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For the QW tail weight measures we have the following result:

Theorem 6 Let F = Φ (the standard normal distribution), then the QW alternatives are

asymptotically normal, i.e.

√
n(QWn −QW ) →D N(0, σ2

QW )

with asymptotic variances σ2
LQW (0.125) = σ2

RQW (0.875) = 2.23 and σ2
LQW (0.25) = σ2

RQW (0.75) =

3.71.

The asymptotic normality of the MC based measures has not been proven yet, but we

constructed QQ-plots based on 1000 samples of size 1000 which suggest their asymptotic

normal behavior. Further on we assume for all measures the validity of the asymptotic

normality, such that we may calculate V (T, F ) from (3.3). Using numerical integration we

obtain the values listed in Table 1 for the G0,0, G0.5,0 and the logistic distribution.

G0,0 G0.5,0 Logistic

LQW(0.125) 2.23 2.39 2.17

RQW(0.875) 2.23 2.02 2.17

LQW(0.25) 3.71 3.81 3.68

RQW(0.75) 3.71 3.58 3.68

LMC 2.62 2.63 2.60

RMC 2.62 2.55 2.60

Table 1

Asymptotic variances at the standard normal G0,0 distribution, at the G0.5,0 distribution and at

the logistic distribution.
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4 Finite-sample behavior

4.1 Performance at uncontaminated distributions

As in the sequel we will mainly consider the finite-sample versions of the proposed measures,

we will from now on omit the subscript n in their abbreviation (e.g. LMCn is written as

LMC).

First we conducted a similar study as in [9]. We considered 24 symmetric distributions: the

standard normal distribution N(0,1) (= G0,0), the standard logistic distribution, the Student

t-distribution with n = 1, 2, 4, 6, 8, 10 degrees of freedom; the Tukey gh-distribution with g =

0, h = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30; the Tukey Lambda distribution with λ = 10, 7, 4, 2, 1

and the Unbounded Johnson distribution with parameters γ = 0 and δ = 3, 2.5, 2, 1.5, 1.

Note that the Tukey Lambda distribution [12] with parameter λ (say TL(λ)) is defined as:
Y = Xλ−(1−X)λ

λ
λ 6= 0

Y = Logistic λ = 0

with X ∼ Uniform(0, 1). TL(1) corresponds with the uniform distribution on [-1,1], whereas

TL(2) is uniformly distributed on [-0.5,0.5]. The Unbounded Johnson distribution [16] with

parameters γ and δ (say SU(γ, δ)) is given by:

Y =
eX − e−X

2

with X ∼ N(−γ, 1
δ2 ). Nonparametric density estimates of all these 24 distributions are drawn

in Figure 4. In each box we consider a group of distributions with increasing tail weight.

We considered the classical kurtosis b2, the right tail weight measures RQW(0.875), RQW(0.75)

and RMC and the measure of peakedness P which was recently proposed in [25]. It is defined

as:

P =
Q(0.875)−Q(0.125)

Q(0.75)−Q(0.25)

hence it is like the QW alternatives only defined on certain quantiles of the data. Its break-

down value is 12.5% just as for LMC, RMC, LQW(0.25) and RQW(0.75). Although P can be
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Fig. 4. Nonparametric density estimates of 24 symmetric distributions.

defined on any distribution, it specifically measures peakedness for symmetric distributions.

Note that Schmid and Trede [25] also introduced

T =
Q(0.975)−Q(0.025)

Q(0.875)−Q(0.125)

as a measure of fat tails. However, due to its low breakdown value of 2.5% we did not include

it in our comparison. We also did not have to consider our left tail weight measures as we

now only focus on symmetric distributions. Next, we computed the empirical power of the

Shapiro-Wilk test at each of the 24 symmetric distributions based on 1000 samples of size 20.

The Shapiro-Wilk test [26] is a well-known test for normality which has a high power against

long- or short-tailed distributions. We thus expect that tail weight measures will adequately

detect non-normality if they differ a lot (in absolute value) from their value at the normal

distribution at distributions where Shapiro-Wilk attains high power. Table 2 lists for the 24

distributions the resulting empirical power values of the Shapiro-Wilk test together with the

average absolute deviation of the measure at the given distribution compared to its value at
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the normal distribution. Figure 5 shows the scatter plots of the values found in Table 2 for b2

and RMC. Figures of P, RQW(0.875) and RQW(0.75) are comparable to that of RMC. It can

be seen that at the Tukey Lambda Distribution with λ = 10 the power of the Shapiro-Wilk

test is very high but the kurtosis is hardly different from 3. This problem does not occur

with any of the robust measures. On the contrary they clearly detect the non-normality of

the TL-distributions.

Note that also the test proposed in [4] is very powerful to detect normality but it is also not

robust as it is based on moments of the data. Hence, we did not include this test (among

many others) in our comparison.

power b2 P RQW(0.875) RQW(0.75) RMC

N(0,1) 0.051 0 0 0 0 0

TL(4) 0.029 0.553 0.170 0.048 0.062 0.052

SU(0,3.0) 0.073 0.529 0.027 0.027 0.016 0.019

SU(0,2.5) 0.089 0.821 0.038 0.039 0.022 0.027

GH(0,0.05) 0.094 0.820 0.038 0.037 0.021 0.026

Student(10) 0.095 1.002 0.040 0.039 0.022 0.028

Logistic(0,1) 0.109 1.197 0.065 0.061 0.035 0.044

Student(8) 0.117 1.472 0.049 0.049 0.027 0.034

SU(0,2.0) 0.127 1.492 0.061 0.058 0.034 0.041

Student(6) 0.148 2.843 0.068 0.067 0.037 0.047

GH(0,0.10) 0.156 2.506 0.076 0.072 0.041 0.051

TL(1) 0.192 1.200 1.206 0.249 0.145 0.200

TL(2) 0.195 1.200 0.206 0.249 0.145 0.199

SU(0,1.5) 0.217 4.161 0.110 0.099 0.058 0.071

GH(0,0.15) 0.245 6.742 0.114 0.105 0.061 0.074

Student(4) 0.251 ∞ 0.109 0.103 0.591 0.073

GH(0,0.20) 0.319 19.39 0.154 0.136 0.080 0.096

TL(7) 0.338 0.879 1.236 0.369 0.310 0.321

GH(0,0.25) 0.375 60.09 0.195 0.165 0.098 0.117

SU(0,1.0) 0.407 30.36 0.251 0.197 0.121 0.142

GH(0,0.30) 0.452 144.2 0.236 0.193 0.115 0.137

Student(2) 0.553 ∞ 0.258 0.214 0.125 0.149

TL(10) 0.806 2.383 2.957 0.545 0.481 0.485

Student(1) 0.872 ∞ 0.709 0.418 0.269 0.300

Table 2

Empirical power of the Shapiro-Wilk test at 24 symmetric distributions together with the average

absolute deviation of the different tail weight measures compared to their values at the normal

distribution.
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Fig. 5. Scatter plots of the average absolute deviation of (a) the kurtosis b2 and (b) the RMC from

their value at the normal distribution measured at 24 symmetric distributions, against the power

of the Shapiro-Wilk test.

Another way of testing the performance of the proposed measures at uncontaminated distri-

butions is by using goodness-of-fit tests. Assume that we want to test whether the data are

sampled from a certain distribution G or whether they come from a distribution with longer

tails. We could then formulate the null hypothesis as
H0 : ω(F ) = ω(G)

H1 : ω(F ) > ω(G)

(4.1)

with ω any tail weight measure. Under H0 it holds that

zn =
√

n
ωn − ω(G)√

V (ω,G)
≈H0 N(0, 1). (4.2)

The p-value (significance) of this test then equals p = P (Z > z) = 1− Φ(z). We considered

the null hypothesis (4.1) for the normal distribution G = G0,0 and a skewed distribution

G = G0.5,0. As alternative distributions, we used the G0,h and G0.5,h distributions with

h ranging from 0 tot 0.3. For the test of normality we also included the Tukey Lambda

distribution with λ = 5.2 because it has a kurtosis γ2 = 3. From these distributions, 10000

samples of size n = 100 and n = 1000 were drawn. The results are summarized in Tables 3

and 4 by computing the fraction of the 10000 samples on which the null hypothesis (4.1) was

rejected in favor of the alternative at the 5% significance level. This is an approximation of
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n = 100 n = 1000

G0,0.0 G0,0.1 G0,0.2 G0,0.3 TL(5.2) G0,0.0 G0,0.1 G0,0.2 G0,0.3 TL(5.2)

SW 0.052 0.456 0.828 0.962 0.469 0.052 0.999 1.000 1.000 1.000

b2 0.059 0.619 0.910 0.981 0.023 0.058 1.000 1.000 1.000 0.009

P 0.035 0.083 0.173 0.298 0.673 0.040 0.370 0.825 0.980 1.000

LQW(0.125) 0.029 0.086 0.183 0.308 0.341 0.042 0.448 0.890 0.992 0.995

RQW(0.875) 0.028 0.083 0.182 0.311 0.343 0.042 0.445 0.891 0.992 0.992

LQW(0.25) 0.034 0.054 0.080 0.114 0.210 0.047 0.166 0.379 0.612 0.885

RQW(0.75) 0.034 0.055 0.081 0.115 0.199 0.047 0.162 0.374 0.599 0.880

LMC 0.033 0.069 0.118 0.182 0.266 0.046 0.264 0.607 0.855 0.961

RMC 0.029 0.065 0.120 0.182 0.259 0.048 0.261 0.608 0.848 0.959

Table 3

Fraction of 10000 samples of different data sizes n from several distributions Gg,h on which the null

hypothesis H0 : ω(F ) = ω(G0,0) was rejected at the 5% significance level.

n = 100 n = 1000

G0.5,0.0 G0.5,0.1 G0.5,0.2 G0.5,0.3 G0.5,0.0 G0.5,0.1 G0.5,0.2 G0.5,0.3

SW - - - - - - - -

b2 0.001 0.020 0.075 0.154 0.020 0.388 0.814 0.962

P 0.036 0.091 0.159 0.259 0.043 0.296 0.723 0.946

LQW(0.125) 0.041 0.122 0.267 0.430 0.050 0.588 0.967 0.999

RQW(0.875) 0.015 0.039 0.084 0.161 0.029 0.271 0.716 0.936

LQW(0.25) 0.044 0.066 0.112 0.147 0.051 0.204 0.470 0.740

RQW(0.75) 0.032 0.047 0.059 0.094 0.048 0.125 0.290 0.487

LMC 0.042 0.095 0.182 0.267 0.050 0.387 0.790 0.963

RMC 0.026 0.051 0.078 0.135 0.046 0.184 0.442 0.689

Table 4

Fraction of 10000 samples of different data sizes n from several distributions Gg,h on which the null

hypothesis H0 : ω(F ) = ω(G0.5,0) was rejected at the 5% significance level.

the power of the goodness-of-fit test against several alternative hypotheses. We also added

the Shapiro-Wilk test (SW) which is a two-sided test of normality, together with the test

(4.2) based on ω = b2 and on ω = P . The asymptotic variances of b2 and P are respectively

24 and 2.80 at G0,0 and 3.6.104 and 3.98 at G0.5,0.

In the columns G0,0 and G0.5,0 we expect to find the nominal level α = 5%. As the other

columns satisfy the alternative hypothesis, the reported values should be as close to 1 as

possible. We clearly observe an increasing trend as h increases. The SW test adequately

detects deviations from normality, but it cannot be applied to the skewed distributions
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G0.5,h. The test based on the kurtosis b2 is powerful to test normality, but it fails at the

TL(5.2) distribution. This is due to the fact that γ2 = 3 at TL(5.2), hence it can not be

distinguished from the normal distribution. To test for the skewed G0.5,0 against other skewed

distributions, we see that b2 is very conservative at n = 100. Of our six proposed measures,

LQW(0.125) and RQW(0.875) are superior in almost all situations, followed by LMC and

RMC. The measures LQW(0.25) and RQW(0.75) are clearly the most conservatives. The

power of the P measure at symmetric distributions is comparable with that of LQW(0.125)

and RQW(0.875), whereas at the asymmetric G0.5,0, P behaves similar to LMC. The results

being much better for n = 1000 than for n = 100, we see that the power of these robust tests

is rather low. This could be improved by constructing a test which is not solely based on a

tail weight measure, but also on a robust measure of skewness. This is the idea behind the

Jarque-Bera statistic [2] based on the classical skewness and kurtosis and the test statistics

developed in [18]. We are currently investigating this approach for the quantile and the

medcouple measures of skewness and tail weight.

Note that it is also possible to construct tables consisting of critical values for different sample

sizes n. Hereby it suffices to replace the asymptotic variance V (ω,Gg,0) with nVn(ω,Gg,0),

with Vn the finite-sample variance of ω. This variance can be approximated through extensive

simulations, as e.g. done in [25]. We have done this for the situations of Tables 3 and 4, but

we found no impressive improvements. Hence we prefer to work with the asymptotic variance

which does not depend on the sample size.

4.2 Performance at contaminated distributions

We now compare the robustness of the tail weight measures using contaminated Gg,h dis-

tributions. To this end, we generated 1000 samples of size n = 1000 from G0,h (symmetric

distributions) and from G0.5,h (asymmetric distributions) with h ranging from 0 to 0.3 and

computed the uncontaminated value of the measures by averaging the estimates over these

samples. Next, contaminated samples were created by taking samples of size 1000(1 − ε),

and adding a normal sample N(a, σ2 = 0.1) of size 1000ε with a = 40 (right contamination),

a = −40 (left contamination) and a = 0 (central contamination), for ε = 0.05. Figure 6

shows the differences between the average estimate at these contaminated samples and the
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value at the uncontaminated samples for the right tail weight measures. The figures for the

left tail weight measures were similar and are therefore not included.
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Fig. 6. Right tail weight difference between right contaminated (upper), left contaminated (middle)

and central contaminated (lower) samples and uncontaminated samples, with 5% contamination.

In all figures, the bias caused by the outliers remains rather stable for increasing h. From the

middle pictures we see that the right tail measures are hardly influenced by left contamina-

tion. As we would expect, LQW(0.25) and RQW(0.75) are the most robust against several
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n = 100 n = 1000

symmetric 0% 1% 2% 4% 0% 1% 2% 4%

SW 0.052 0.456 0.669 0.879 0.052 0.994 1.000 1.000

b2 0.059 0.507 0.730 0.917 0.058 0.996 1.000 1.000

P 0.035 0.038 0.040 0.051 0.040 0.051 0.063 0.093

LQW(0.125) 0.029 0.034 0.035 0.047 0.042 0.063 0.075 0.132

RQW(0.875) 0.028 0.033 0.038 0.043 0.042 0.058 0.082 0.128

LQW(0.25) 0.034 0.034 0.033 0.042 0.047 0.053 0.055 0.072

RQW(0.75) 0.034 0.035 0.039 0.042 0.047 0.059 0.057 0.069

LMC 0.033 0.032 0.033 0.043 0.046 0.056 0.065 0.094

RMC 0.029 0.035 0.035 0.044 0.048 0.052 0.070 0.093

Table 5

Fraction of 10000 samples of different data sizes n on which the null hypothesis of normality was

rejected at the 5% significance level. The samples are drawn from a normal distribution with varying

percentage of symmetric contamination.

types of contamination, followed by LMC and RMC. Again we thus see that LMC and RMC

make a good compromise between the more adequate LQW(0.125) and RQW(0.875) and

the more robust LQW(0.25) and RQW(0.75).

Let us now investigate how the goodness-of-fit tests are effected by outliers. As been done

in [25] we report in Tables 5, 6 and 7 the proportion of rejections of the null hypothesis of

normality (g = 0, h = 0) for various fractions ε of contaminated data. We tested the null

hypothesis on 10000 samples of size 100 and 1000 at the 5% significance level. Outliers were

generated from a N(0, 5) distribution, yielding symmetric contamination, or from a N(0, 0.1),

which is central contamination, or from a N(40, 0.1) distribution (right contamination).

As could be seen in Tables 5, 6 and 7 the power of the SW and b2 test are heavily influenced

by adding contamination. This effect is smaller when adding contamination with small vari-

ance in the center of the distribution. In this situation, the P test performs worse than the

QW and MC alternatives, which is not surprising as P measures peakedness. Also at right

contamination P is more sensitive than our left tail weight measures. Here we see that the

right tail weight measures perform not very well. It thus seems that comparing the results of

a test based on a left and right tail weight measure gives more information. It remains true

that the MC alternatives can be considered as a good compromise for the QW alternatives.
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n = 100 n = 1000

central 0% 1% 2% 4% 0% 1% 2% 4%

SW 0.052 0.053 0.050 0.061 0.052 0.057 0.079 0.156

b2 0.059 0.066 0.071 0.089 0.058 0.087 0.117 0.197

P 0.035 0.040 0.050 0.071 0.040 0.068 0.101 0.196

LQW(0.125) 0.029 0.034 0.031 0.039 0.042 0.041 0.046 0.055

RQW(0.875) 0.028 0.030 0.031 0.041 0.042 0.046 0.048 0.058

LQW(0.25) 0.034 0.033 0.034 0.033 0.047 0.043 0.046 0.044

RQW(0.75) 0.034 0.031 0.035 0.035 0.047 0.044 0.044 0.042

LMC 0.033 0.033 0.031 0.036 0.046 0.043 0.055 0.056

RMC 0.029 0.028 0.033 0.035 0.048 0.044 0.051 0.055

Table 6

Fraction of 10000 samples of different data sizes n on which the null hypothesis of normality was

rejected at the 5% significance level. The samples are drawn from a normal distribution with varying

percentage of central contamination.

n = 100 n = 1000

right 0% 1% 2% 4% 0% 1% 2% 4%

SW 0.052 1.000 1.000 1.000 0.052 1.000 1.000 1.000

b2 0.059 1.000 1.000 1.000 0.058 1.000 1.000 1.000

P 0.035 0.041 0.046 0.060 0.040 0.058 0.077 0.160

LQW(0.125) 0.029 0.029 0.030 0.029 0.042 0.039 0.038 0.030

RQW(0.875) 0.028 0.042 0.054 0.127 0.042 0.106 0.236 0.816

LQW(0.25) 0.034 0.033 0.033 0.035 0.047 0.044 0.038 0.042

RQW(0.75) 0.034 0.043 0.044 0.057 0.047 0.062 0.089 0.187

LMC 0.033 0.031 0.030 0.030 0.046 0.039 0.038 0.034

RMC 0.029 0.043 0.048 0.085 0.048 0.078 0.141 0.393

Table 7

Fraction of 10000 samples of different data sizes n on which the null hypothesis of normality was

rejected at the 5% significance level. The samples are drawn from a normal distribution with varying

percentage of right contamination.

5 Examples

Example 1.

The stars data set [23] contains the light intensity and the surface temperature of 47 stars

in the direction of Cygnus. A scatter plot of the data and the robust LTS regression line [22]

are shown in Figure 7(a). In regression, it is important to check normality of the residuals.
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When a robust regression method is applied, it is sufficient that all residuals except those

from the outlying observations are normally distributed. Figure 7(b) and Figure 7(c) contain

the normal QQ-plot and the boxplot of the LTS residuals, from which five clear outliers are

visible. It is known that the four largest residuals correspond with giant stars. The sixth

observation that seems to deviate from the linear trend in the normal quantile plot is rather

a borderline case with a standardized LTS residual of 3.47. Table 8 shows that the SW

test and the b2 test lead to very different conclusions whether or not these five outliers are

included in the data. The same conclusion holds for RQW(0.875) and LQW(0.125) which is

due to their low breakdown point of 12.5%. All the other robust tests, including P, do not

reject the normality assumption, even in the presence of several outliers. We should be careful

in interpreting these results as this data set is very small and consequently the robust tests

are known to be very conservative. But still, this example shows again the non-robustness

of the SW and the b2 test.
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Fig. 7. The Stars data: (a) Scatter plot with LTS regression line; (b) normal QQ-plot of the residuals;

(c) boxplot of the residuals.

Example 2.

The baseball data [21] consists of 162 major league baseball players who achieved true free

agency. This means that the player could sell his services to the highest bidding team. A

player is expected to handle in two possible directions. Or he plays badly in the year of his

free agency, because he is unhappy with his current team and he will play much better in

the next year. Or he pushes his performance in his free agency year in order to get to a
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SW b2 P LQW(0.125) RQW(0.875) LQW(0.25) RQW(0.75) LMC RMC

stars + 0.000 0.000 0.571 0.013 0.004 0.490 0.366 0.271 0.199

stars – 0.622 0.375 0.622 0.193 0.734 0.308 0.672 0.228 0.669

baseball + - 0.000 0.074 0.892 0.165 0.697 0.107 0.695 0.134

baseball – - 0.848 0.427 0.981 0.480 0.699 0.189 0.706 0.206

procter + - - 0.765 0.468 0.551 0.355 0.634 0.944 0.739

procter – - - 0.722 0.404 0.578 0.457 0.659 0.987 0.805

Table 8

Significance of the two-sided goodness-of-fit tests to the normal distribution (stars), to the χ2
2 dis-

tribution (baseball) and to the Student(3) distribution (procter) with (+) and without (–) outliers.

better team, but then he will play less well the next year. Here, we wanted to test whether

the batting average (hits per at bat) at the free agency year and at the next year is bivariate

normally distributed. Therefore we computed the robust distances given by

(x− µ̂)tΣ̂−1(x− µ̂)

in which µ̂ and Σ̂ are the Minimum Covariance Estimator (MCD) estimates of location

and scatter [22] and (.)t stands for matrix transpose. If the data follow a bivariate normal

distribution, these robust distances are approximately χ2
2 distributed. On the χ2

2 based QQ-

plot of Figure 8 we notice two prominent outliers. With these outliers included, the b2 test

rejects the null hypothesis, but it clearly supports the null hypothesis when they are removed.

The robust tests based on our tail weight measures are barely influenced by the outliers and

always accept H0. Only the p-value of RQW(0.875) changes considerably, but the conclusion

remains the same. Also P is rather sensitive to the outliers. At the 7.5% significance level, it

even rejects the bivariate normality. Note that we cannot consider SW here, as it can only

be used to test normality.
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Fig. 8. The Baseball data: χ2
2 based QQ-plot of the robust distances.

Example 3.
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From Datastream we collected the daily logarithmic returns of the Procter & Gamble stock

from January 2000 to December 2003, leading to a univariate data set consisting of 1004

values. From the Student(3) based QQ-plot of Figure 9, we could believe these data to be

likewise distributed, apart from one very abnormal observation. This observation is noted

on 7 March 2000, the day that Procter & Gamble has lost 40 billion of US Dollars due to a

profit warning. All the robust tests do not reject the null hypothesis, even with the extreme

value included. Moreover, they have the advantage that they can be performed to test the

goodness-of-fit of distributions without finite fourth moments, such as the Student(3). On

the contrary, the b2 test cannot be applied here.
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Fig. 9. The Procter & Gamble data: Student(3) based QQ-plot.

6 Conclusion

In this paper we have proposed several tail weight measures, based on robust measures of

skewness. We considered left and right tail weight measures to make them applicable on

asymmetric distributions. All of them follow the anti-skewness ordering of MacGillivray and

Balanda [17], making them intuitively correct tail weight measures. Moreover they do not

depend on moments of the data.

We have shown that the measures are robust against outlying values. They all have a posi-

tive breakdown value and a bounded influence function. Except in the median, the influence

function of the MC alternatives is continuous, while the QW alternatives have a stepwise

influence function. Small perturbations may then lead to larger differences. Regarding the

breakdown value, the LQW(0.25), RQW(0.75), LMC and RMC measures are preferable be-

cause of their breakdown value of 12.5%. This was confirmed with finite-sample simulations.
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At a bunch of symmetric distributions, we found that the robust tests are more adequate to

detect non-normality. Regarding some goodness-of-fit tests, LQW(0.125) and RQW(0.875)

appeared to be preferable, followed by LMC and RMC. In comparison with the commonly

used Shapiro-Wilk test of normality or a test based on the classical kurtosis, the proposed

measures show less power, but they are much more capable to handle some outlying values.

In practice, we therefore recommend to perform both a robust and a non-robust test. If

they lead to contradictory conclusions, this can be due to the sensitivity of the non-robust

test towards outliers, or due to the conservative behavior of the robust test. In that case, a

further investigation of the data is required.

Finally, the goodness-of-fit test proposed by Schmid and Trede [25] gives results which are

comparable with the QW and MC alternatives. But this test assumes inherently a symmetric

distribution and it is more sensitive to central contamination. Moreover by considering a left

and a right tail measures separately, we are able to perform separate tests on each tail of

the distribution. This can provide additional insight in the shape of the data.

When we compare the QW and MC tail weight measures, we observe that the MC alterna-

tives make a good compromise between robustness towards outlying values and adequately

measuring tail weight. Moreover because of their low O(n log(n)) computation time and their

lack of any parameter p or q, we recommend LMC and RMC to use in practice. In our future

work we will investigate how the goodness-of-fit test can be improved by considering the

joint distribution of a robust tail weight measure and a robust skewness estimator.

Software

Source code to calculate all the mentioned measures in Matlab or S-plus and their asymptotic

variances in Mathematica can be downloaded from http://www.agoras.ua.ac.be/ and

http://www.wis.kuleuven.ac.be/stat/robust.html.

Appendix

Proof of Theorem 1

For simplicity, we will assume that n is divisible by 4, for other values of n the proof is
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similar.

First, we prove that ε∗n(RMCn; Xn) ≤ 1/n(dn/8e+1). By location invariance, assume w.l.o.g.

that the third quartile q3(Xn) = 0. Moreover, let RMC(Xn) ≥ 0 by symmetry. We will

construct a contaminated sample X ′
n by replacing dn

/
8e + 1 data points from Xn such that

the RMC becomes arbitrarily large, thus RMC(X ′
n) > B for any RMC(Xn) < B < 1. To

contaminate our sample, we shift the dn/8e + 1 (= n − [7n/8] + 1) largest values of Xn by

a constant k > 2 max |xi|/(1 − B). (The notation [x] stands for the largest integer smaller

or equal to x.) Now, q3(X
′
n) = q3(Xn), the sample median mn(X ′

n) = mn(Xn) and for all

mn ≤ xi ≤ qn we have that

h(xi, x
′
j) =


h(xi, xj) for j = n

2
+ 1, . . . , [7n

8
]− 1

xj+xi+k

xj−xi+k
for j = [7n

8
], . . . , n.

By definition of k, we obtain that h(xi, x
′
j) > B for each j ≥ [7n/8]. Since i runs over n/4

values, there are at least n/4(dn/8e + 1) kernels larger than B. We assumed that Xn is in

general position and that n is divisible by 4, hence the RMC is computed as the median over

n2/16 values. It follows that RMCn(X ′
n) > B.

It remains to show that ε∗n(RMCn; Xn) ≥ 1/n(dn/8e−1). Replace k < dn/8e−1 data points

by arbitrary values x′i. We need to show that RMC(X ′
n) does not depend on the contaminated

data, and thus its absolute value should remain smaller than 1. The RMC(X ′
n) is based upon

the n/2 of the x′i to the right of the median m′
n = mn(X ′

n). Denote the third quartile of X ′
n

by q′3, then there are a original data points lying in (m′
n, q

′
3] and b original data points larger

than or equal to q′3 with

[
n

8
] + 2 ≤ min{a, b} and max{a, b} ≤ n

4
.

Also, it is clear that a + b ≥ n/2− [n/8] + 2 = [3n/8] + 2, such that the number of uncon-

taminated expressions h(xi, xj) contributing to RMC(X ′
n) is ab ≥ a([3n/8] + 2 − a). It is

easy to verify that this lower bound is strictly larger than [(n2/16 + 1)/2], hence RMC(X ′
n)

is obtained as the median of one or two uncontaminated kernels.

Proof of Theorem 2
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Let the contaminated distribution of F be Fε = (1 − ε)F + ε∆x and the corresponding

quantile function Qε = F−1
ε . Then, we can write

IF (x, LQW (p), F ) =
d

dε

[
Qε(

1−p
2

) + Qε(
p
2
)− 2Qε(0.25)

Qε(
1−p
2

) + Qε(
p
2
)

]∣∣∣∣∣
(ε=0)

.

Because IF (x, Q(p), F ) = d
dε

Qε(p)
∣∣∣
(ε=0)

, simple calculus yields the given formula.

Proof of Theorem 3

Similar to the proof of Theorem 2.

Proof of Theorem 4

First, we rewrite (2.1) for a contaminated distribution Fε = (1 − ε)F + ε∆x. Let LMCε =

LMC(Fε), mε = F−1
ε (0.5) and qε = F−1

ε (0.25), then the following equation holds:

1

32
=
∫ mε

qε

∫ qε

−∞
I
(
−x2 + x1 − 2qε

x2 − x1

≤ LMCε

)
dFε(x1)dFε(x2).

Note that the conditions

−x1 + x2 − 2qε

x2 − x1

≤ LMCε, x1 ≤ qε, qε ≤ x2 ≤ mε, −1 ≤ LMCε ≤ 1

are equivalent to

x1 ≥
x2(−LMCε − 1) + 2qε

1− LMCε

, qε ≤ x2 ≤ mε, −1 ≤ LMCε ≤ 1.

We now introduce the functions

g1(v, ε) =
v(−LMCε − 1) + 2qε

1− LMCε

g2(v, ε) =
v(−LMCε + 1)− 2qε

−1− LMCε

which for ε = 0 collapse with g1,l and g2,l defined in (3.1) and (3.2). With these notations,

we obtain
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1

32
=
∫ mε

qε

Fε(g1(x2, ε))dFε(x2)

=
∫ mε

qε

[(1− ε)F + ε∆x] (g1(x2, ε)) d [(1− ε)F + ε∆x] (x2)

= (1− 2ε)
∫ mε

qε

F (g1(x2, ε))dF (x2) + ε
∫ mε

qε

F (g1(x2, ε))d∆x(x2)

+ ε
∫ mε

qε

∆x(g1(x2, ε))dF (x2) + O(ε2). (6.1)

To compute IF (x, LMC, F ) = ∂
∂ε

LMC(Fε)|(ε=0) we derive equality (6.1) with respect to ε,

and let ε → 0. Since the terms in ε2 vanish, we have to derive the first three terms only,

denoted by T1,ε, T2,ε and T3,ε.

∂

∂ε
T1,ε

∣∣∣∣∣
(ε=0)

=
∂

∂ε

[
(1− 2ε)

∫ mε

qε

F (g1(x2, ε))dF (x2)
]∣∣∣∣∣

(ε=0)

= − 2
∫ mF

qF

F (g1(x2))dF (x2) +
∂

∂ε

∫ mε

qε

F (g1(x2, ε))dF (x2)

∣∣∣∣∣
(ε=0)

(6.2)

By definition of LMCF , the first term in (6.2) equals −1/32, whereas Leibnitz’ rule yields

∂

∂ε

∫ mε

qε

F (g1(x2, ε))dF (x2)

∣∣∣∣∣
(ε=0)

=

∫ mF

qF

F ′(g1(x2, 0))
∂

∂ε
g1(x2, ε)

∣∣∣∣∣
(ε=0)

dF (x2) + F (g1(mF , 0))F ′(mF )
∂

∂ε
mε

∣∣∣∣∣
(ε=0)

+ F (g1(qF , 0))F ′(qF )
∂

∂ε
qε

∣∣∣∣∣
(ε=0)

Calculus yields

∂

∂ε
g1(x2, ε)

∣∣∣∣∣
(ε=0)

=
2(q1 − x)IF (x, LMCF , F ) + 2IF (x, q1, F )(−LMCF + 1)

(−LMCF + 1)2

hence

∂

∂ε
T1,ε

∣∣∣∣∣
(ε=0)

= − 1

16
+ IF (x, LMCF , F )

∫ mF

q1

2(q1 − x2)

(−LMCF + 1)2
f(g1(x2))dF (x2)

+ 2IF (x, q1, F )
∫ mF

q1

f(g1,l(x2))

−LMCF + 1
dF (x2)−

1

4
f(q1)IF (x, q1, F )

+ F (g1,l(mF ))f(mF )IF (x, mF , F ). (6.3)

The second term T2,ε in equation (6.1) has partial derivative
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∂

∂ε
T2,ε

∣∣∣∣∣
(ε=0)

=
∂

∂ε

[
ε
∫ mε

qε

F (g1(x2, ε))d∆x(x2)
]∣∣∣∣∣

(ε=0)

=
∫ mε

qε

F (g1(x2, ε))d∆x(x2)
∣∣∣∣
(ε=0)

= F (g1,l(x))[I(x > q1)− I(x > mF )] (6.4)

whereas for the third term T3,ε we obtain

∂

∂ε
T3,ε

∣∣∣∣∣
(ε=0)

=
∫ mε

qε

∆x(g1(x2, ε))dF (x2)
∣∣∣∣
(ε=0)

=
∫ mε

qε

I(x < g1(x2, ε))dF (x2)
∣∣∣∣
(ε=0)

=
∫ mε

qε

I(x2 < g2(x, ε))dF (x2)
∣∣∣∣
(ε=0)

=
∫ g2(x,ε)

qε

I(mε > g2(x, ε))I(qε < g2(x, ε))dF (x2)

∣∣∣∣∣
(ε=0)

+
∫ mε

qε

I(g2(x, ε) > mε)dF (x2)
∣∣∣∣
(ε=0)

= I(g2,l(x) < mF )I(x < q1)
[
F (g2,l(x))− 1

4

]
+ I(g2,l(x) > mF )

1

4

= I(x > g1,l(mF ))I(x < q1)
[
F (g2,l(x))− 1

4

]
+ I(x < g1,l(mF ))

1

4
. (6.5)

Combining equations (6.1), (6.3), (6.4), and (6.5) and using the fact that

H ′
F (LMCF ) = 16

∫ mF

q1

2f(g1,l(x2))

(
q1 − x2

(−LMCF + 1)2

)
dF (x2)

and

IF (x, q1, F ) =
0.25− I(x < q1)

f(q1)

finally leads to the influence function given in Theorem 4.

Proof of Theorem 5

Similar to the Proof of Theorem 4.

Proof of Theorem 6

The proof is similar as in [25]. For 0 < p1 < ... < pk < 1 and F = Φ the sample quantiles

are asymptotically normal, i.e. N(0, Σ) with typical element in the covariance matrix Σ =
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(σij)i,j=1,...,k given by:

σij =
pi(1− pj)

φ(xpi
)φ(xpj

)

for i ≤ j and φ denoting the density of the standard normal distribution (Serfling, 1980).

Let k = 4 and h : IR3 → IR : (x1, x2, x3) → (x3 +x1−2x2)(x3−x1)
−1 with partial derivatives

h′(.) = (h1(.), h2(.), h3(.)) where h1(.) = 2(x3 − x2)(x3 − x1)
−2, h2(.) = −2(x3 − x1)

−1 and

h3(.) = 2(x2 − x1)(x3 − x1)
−2. Using the delta method we arrive at:

√
n(QWn −QW ) →D N(0, h′Σh),

where h has to be evaluated at the pi quantiles of the corresponding quantiles of the QW

alternative. Numerical calculations of h′Σh give the results in the Theorem.
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