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Abstract

The kurtosis coefficient is often regarded as a measure of the tail heaviness of a
distribution relative to that of the normal distribution. However, it also measures
the peakedness of a distribution, hence there is no agreement on what kurtosis
really estimates. Another disadvantage of the kurtosis is that its interpretation and
consequently its use is restricted to symmetric distributions. Moreover, the kurtosis
coefficient is very sensitive to outliers in the data. To overcome these problems,
several measures of left and right tail weight for univariate continuous distributions
are proposed. They can be applied to symmetric as well as asymmetric distributions
that do not need to have finite moments. Their interpretation is clear and they are
robust against outlying values. The breakdown value and the influence functions
of these measures and the resulting asymptotic variances are discussed and used
to construct goodness-of-fit tests. Simulated as well as real data are employed for

further comparison of the proposed measures.
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1 Introduction

The classical kurtosis coefficient is introduced in many textbooks and is often regarded as
a measure of the tail heaviness of a distribution relative to that of the normal distribution.

For any distribution F' with finite moments, it is defined as

_a(F)
nelF) = pra(F)?

where p4 and po denote the fourth and the second central moment of F', i.e.

(1.1)

p2 = Ep(X — Ep(X))? and py = Ep(X — Ep(X))*
with X ~ F'. The finite-sample kurtosis will be denoted by b,.

But the kurtosis coefficient has several drawbacks. As been stated in [3], although its wide-
spread use, there is no agreement on what kurtosis really measures. Many authors confirm,
including Ruppert [24], that kurtosis measures both peakedness and tail weight, because if
one moves probability mass from the flanks to the center of a distribution, then to keep scale
fixed one must also move mass from the flanks to the tail. Moreover, theoretical considerations
of kurtosis often have been restricted to symmetric distributions, because of its intrinsic
comparison with the symmetric normal distribution (e.g. [8]). Finally, because the kurtosis
is based on moments of the data, by is very sensitive to outlying values. This is reflected in

the unbounded influence function of v [24].

In this paper we introduce several measures of left and right tail weight for univariate con-
tinuous distributions. They can be applied to symmetric as well as asymmetric distributions.
Their interpretation is clear and they are robust against outlying values. Note that several
other authors have proposed robust measures of kurtosis, but they were only defined for
symmetric distributions or merely measured peakedness instead of tail weight ([10], [18], [9]

and [25]).

In Section 2 we define the new tail weight measures and derive some elementary properties.
We will prove that they satisfy the anti-skewness ordering of MacGillivray and Balanda [17].
This is used to compare distributions according to the fatness or weakness of their tails [19].

In Section 3 we compute the breakdown value, the influence function and the asymptotic

2



variance of the proposed measures. Section 4 studies the finite-sample behavior of the esti-
mators, both at contaminated and uncontaminated data sets. Some examples of real data
sets are analyzed in Section 5, and Section 6 contains some conclusions. Some of the proofs

of the theorems are collected in the Appendix.

2 Measures of tail weight

We will define tail weight measures for continuous univariate distributions F'. Their finite-
sample versions for an i.i.d. sample X,, = {1, ..., x,} from F then follow in a straightforward

way from the population definitions.

We define left and right tail measures as measures of skewness that are applied to the half
of the probability mass lying to the left, respectively the right, side of the median of F,
denoted as mp = F~1(0.5). In [5] a comparison is made between several robust skewness
measures. The three most interesting skewness measures (considering accuracy, robustness
and computational complexity) were the octile skewness (OS), the quartile skewness (QS)
and the medcouple (MC). The octile and the quartile skewness originate from Hinkley’s [13]

class of skewness measures:

(Q(1 —p) —Q0.5)) — (Q(0.5) — Q(p))
Q1 —p) —Q(p)

for 0 < p < 1/2and Q(p) = Qr(p) = F~!(p) the quantile function. The octile skewness takes

71(F7p) =

p = 1/8 whereas the quartile skewness is defined as 7, (F,1/4). When we apply —v1(F,p)
to the left half (z < mp), and v (F,1 — p) = 71(F,q) to the right half (x > mp) of F, we
obtain the Left Quantile Weight (LQW) and the Right Quantile Weight (RQW):

Q(5?) +Q(5) — 2Q(0.25)

LOQWE(p) = — Q(l;p) 00
and
L Q(EY) +Q(1 - 1) —20Q(0.75)
RQWrla) = =0 —oa - g

in which 0 < p < % and % < g < 1. To retain a reasonable amount of robustness we will study

LQW(0.125), LQW (0.25), RQW (0.875) and RQW (0.75). Note that the sample versions
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LQW,,(0.125) etc. are easily found by using the quantiles of F,, the empirical distribution

function of X,,.
The medcouple is extensively studied in [6]. It is defined as

MC(F)= med h(x,x2)

r1<mp<x2
with z; and x5 sampled from F' and the kernel function h given by

(z; —mp) — (mp — sz‘)'

h([EZ‘, l’j) =

i

As with the QW alternatives, we can easily apply the MC to one side of the distribution,
leading to the Left Medcouple (LMC) and to the Right Medcouple (RMC), defined as

LMCp = —-MC(x <mp) and RMCp = MC(xz > mp).

Let g1 = ¢1 = Q(0.25) be the first quartile of F', denote gr3 = ¢3 = @Q(0.75) the third
quartile of F' and let I be the indicator function, then with

Hpg(u) = 16 /ql (xzﬂ:l 20 u)dF(xl)dF(xz) (2.1)

To — I

we obtain the shorter formulation
LMCp = Hg;(0.5).
Analogously, we have with

400 3 -2
Hp,(u) = 16/ /q I <W1Q3 < u) dF (1) dF (x2) (2.2)
q3 mp

Tog —T1

the expression
RMCp = Hp,(0.5).

Similar as in [6], we can simplify (2.1) to

mp_(xo(—u—1) 4 2¢;
H =1 F F
FJ(U) 6 0 ( w1 d (1'2)

and (2.2) to

Hpp(u) = 16 /

m

“F (‘”2(“ 1) - 2q3> dF ().

u—1



By using MC,,, the finite-sample version of MC, we obtain the finite-sample versions LMC,,
and RMC,,. Note that they can be seen as estimators of LMCr and RMCpr respectively.
Their computation can be performed in O(nlogn) time due to the fast algorithm described

in [6].

Remark that both the quantile and the medcouple tail weight measures only depend on
quantiles and consequently can be computed at any distribution, even without finite mo-
ments. Moreover, the LMC and RMC measure do not require the choice of any additional
parameter, whereas for the LQW (resp. RQW) measures only p (resp. ¢) has to be fixed
in advance, depending on the degree of robustness one is willing to attain. A different ap-
proach to estimate the tail behavior of a distribution is studied in the field of extreme value
analysis. In this field, the key quantity is the extreme-value index ~, which allows to classify
distributions into a Fréchet-Pareto type (7 > 0), Gumbel type (v = 0) or Extremal Weibull
type (7 < 0). Many estimators have been proposed to estimate ~, see e.g. chapter 5 in [1] for
a recent overview. These estimators can yield very accurate results, but as a disadvantage
they always require the selection of the tail fraction on which the estimates are based. This
is often done by minimizing the asymptotic mean squared error, which itself can be hard
to estimate. The computational complexity of these techniques is thus much harder than
the tail weight measures proposed in this paper. Moreover the tail index is not able to dis-
tinguish Gumbel-type distributions such as the log-normal, the logistic, the exponential or
the Weibull distributions. Note that robust estimators for the tail index in the Pareto case
(7 > 0) have been recently proposed in [27] and [28], whereas [7] addresses the problem of

robustly selecting the number of extreme order statistics for the Hill estimator.

Before discussing the robustness properties of our proposed measures, we look at some general
tail weight properties. Let the random variable X have a continuous distribution Fx and let
W be any of the defined tail weight measures, let LW be a left tail weight measure and RW

be a right tail weight measure.

Proposition 1 W s location and scale invariant, i.e.
W(FaXer) = W(FX)

for any a >0 and b € IR.



Proposition 2 If we invert a distribution, we have:

LW (F_x) = RW(FY).
Proposition 3 If F' is symmetric, then LW (F) = RW(F).
Proposition 4 W € [—-1,1].

Properties 1 and 2 follow immediately from the definitions, and imply Property 3. Property 4
is not really required for a tail weight measure, but at least it gives a lower and an upper
bound for any of the tail weights under consideration. A distribution will have a positive
(resp. negative) RW measure if its upper half (half the probability mass larger than the
median) is skewed to the right (resp. the left). Right skewness occurs more frequently than
left skewness, so our RW measures are typically positive. Similarly we obtain a positive
(resp. negative) LW measure if the lower half is skewed to the left (resp. the right). The
measures become zero when the lower half or the upper half is symmetric, as for example
at the uniform distribution. The extreme situation W = —1 or W = 1 will only occur at
degenerate situations. Consider for example a distribution that has half of its mass at zero,
25% of its mass to the left and 25% to the right of zero, which is then also the median of
the distribution. Then both LW and RW will equal one. Analogously we can construct a
distribution with LW = RW = —1 by setting 25% probability mass at the left and at the
right endpoints of the distribution.

The next property tells us whether W respects the anti-skewness ordering of distributions
as defined by MacGillivray and Balanda [17], which is inspired on the kurtosis ordering of
van Zwet [29]. Let F' and G be continuous distributions with interval support. Because of
the location invariancy, we can assume that the medians of both distributions collapse, or

mp = m¢. Then it is said that G is at least as fat tailed to the left as F' if and only if

F <\ G < G7Y(F(x)) is concave for x < mp = mg (2.3)
and G is at least as fat tailed to the right as F' if and only if

F <I'G & G H(F(x)) is convex for z > mp = mg

both on the support of F.



Proposition 5 If F <! G, then LW(F) < LW(G), and if F <" G, then RW(F) <
RW(G).

The proof of Property 5 is similar to the proof of Property 4 in [6]. For the left tail weight
measures, it should be noted that because of the scale invariancy we can also transform F
and G such that Qr(0.25) = Q¢(0.25). Analogously for the right tail weight measures we
rescale them such that Qr(0.75) = Q¢(0.75).

More specifically, we can consider Tukey’s class of gh-distributions [14]. When a random

variable Z is standard gaussian distributed, then

hz2

LZ;UGT g#0

hz?2

Ze 2 g=20

is said to follow a gh-distribution G/ with parameters g € IR and h > 0. The parameter
g controls the skewness of the distribution, whereas h effects the tail weight. For ¢ = 0,
the variable Y| ; defines a symmetric distribution with zero skewness, but with increasing
tails as h increases. It is also clear that G_, () = 1 — Gy ,(—2), hence we will only con-
sider the symmetric and the right-skewed distributions for which ¢ > 0. The densities of
the gh-distributions can only be computed numerically [20]. In Figure 1 we have drawn a
nonparametric density estimate of Gy and Gys) distributions with & varying between 0
and 0.3. We see that h = 0.3 already defines a distribution with very heavy tails, hence in

the sequel we will only consider examples with h < 0.3.

—— 9¢=00,h=00

Fig. 1. Nonparametric density estimates of the Gy 5, (left panel) and G 5 5, (right panel) distributions

for several values of h between 0 and 0.3.



It is easy to show that these gh-distributions follow the anti-skewness ordering, as Gy, <!
Ggn, and Ggp, <! Ggp, for any hy < hy. To illustrate this, we have drawn in Figure 2 the
left and right tail weight measures for G and Gy with A ranging from 0 to 0.3. We see
that all the curves are monotone increasing, which is an obvious consequence of the validity

of Property 5 for the studied measures.

—  LW(.125)
LQW(0.25)
[ivs

—— RQW(0875)
RQW(0.75)

04

tail weight
tail weight

S S

——  LQW(0125) ——  RQW(0875)
8 4 LQW(0.25) w | RQW(0.75)
° —=— ° -=— RMC

tail weight

tail weight

Fig. 2. Monotone behavior of the left and right tail weight measures for Ggj and Gy with h
ranging from 0 to 0.3.

Also in [8] these gh-distributions with g = 0 are explored to study tail weight. In that paper,
a graphical tool (the dp plot) is introduced in order to study elongation [14]. A distribution
is elongated, in some region, if its quantiles change more rapidly there than do the Gaussian
quantiles. The dp-curve allows to compare graphically symmetric distributions. As for the
G, distributions it holds that dp(z) = hz?, the curve for any Go, lies completely below
the curve for Gop, if hy < hy (see also Figure 1 in [8]). This implies that Ggp, is more

elongated than G j,, which is in line with the anti-skewness ordering based on our measures
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of tail weight. A drawback of this plot is that it is only defined for continuous, unimodal
distributions which are symmetric (about zero). Moreover it does not yield a finite-sample

measure of tail weight.

3 Robustness properties

In this section we study the robustness properties of the proposed measures of tail weight.
In particular, we derive their breakdown value, and their influence function from which the

asymptotic variance follows.

3.1 Breakdown value

The breakdown value of an estimator 7;, at a sample X,, measures how many observations
of X, need to be replaced to make the estimate worthless [23]. For a univariate location
estimator e.g. this means that the absolute value of the estimate becomes arbitrarily large,
whereas we say that a scale estimator breaks down if the estimate becomes arbitrarily large
or close to zero. Since our tail weight measures are bounded by [—1,1], we define their

finite-sample breakdown value as
* .m /
er (Wy; X5,) = min{—;sup |W,,(X))| = 1},
n o xu.

where the data set X is obtained by replacing m observations from X,, by arbitrary values.
The asymptotic breakdown value £*(W; F) is then defined as lim, . £ (W,; X,,) with the

x; sampled from F.

Theorem 1 If the data set X,, is in general position, i.e. no two data points coincide, then

L

n

1—-1) <e(RMC,; X,) <

(I2T+1).

ool 3
S|
ool 3

Here, [z] denotes the smallest integer larger than or equal to z. The same result holds

for LMC,,. The medcouple tail weight measures can thus resist up to 12.5% outliers in the
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data. In a similar way, it can be shown that the left and right quantile tail weight measures
LQW(0.25) and RQW (0.75) have an asymptotic breakdown value of 12.5%, while the
LQW(0.125) and RQW (0.875) can withstand at most 6.25% of outliers.

3.2 Influence function

The influence function of an estimator 7' at some distribution F' measures the effect on T
when adding a small probability mass at the point = [11]. If A, is the point mass in x, then

the influence function is defined as

T(1—e)F +ecA,) —T(F
[F(5, T, F) = lim - (L= F 4 eA0) = T(F)
el0 g

The following theorems give the influence functions of the tail weight measures under study
for any continuous distribution F' with density f. To simplify the conditions, we assumed
that f(z) > 0 for all . Note that Huber [15] showed that the IF of Qr(p) = F~!(p) is given
by

p—1(z <Qr(p))

TF (@, Qrp) F) = =500

Theorem 2
[F (2, LQW (p), F) =2 [(mx, 0, F) = IF(z,Q((1 - p)/2), F)) (0 — Q(p/2))
— (IF(x,Q(p/2), F) = IF(z,q1, ) (Q((1 - p)/2) - ql)] /(QU1 = p)/2) — Qp/2))’
Theorem 3
[F(z, RQW(q), F) = 2 [(]F(x, Q1 = q/2), F) = IF(z,45, F) ) (Q(1 + ¢)/2) — g3))
(1P ) TP QU1+0)/2). ) (1= Q1 = 4/2) |/ (@U1 -0/~ Q01— /)

To derive the influence functions of LMC and RMC, we denote

x(—LMC — 1)+ 2q,

gri(x) = “LMC + 1 (3.1)
 (—LMC +1) - 2q,
g20(x) = “IMC -1 (3.2)
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and analogously ¢ () = (x(RMC — 1) +2¢3)/(RMC + 1) and g, (x) = (x(RMC + 1) —
2q3)/(RMC — 1). Then it holds that

Hea (L) = [ 2= g o) (o)
and

Hep(BMC) = [ S0 g (o) P (20),
Theorem 4 Assume that Hy (LMC) # 0. Then
IF (2, LMC,F) = g l1 ~16F(gu1(2)) (I(x > q1) = I(z > mp))

—16(F(92,l(:v) — i)[(x > gri(mp))(x < q1) —41(z < g1,(mF))

—8sgn(zx — mp)F(guu(mre)) + (5 — 1z < a1)) (4 — facLiery Ja f(gl,Z(fz))dF(l‘z))]
Theorem 5 Assume that Hy, (RMC) # 0. Then

IF (2, RMC, F) = oo [1 — 16F (g2,-(2)) (I(x > mp) — I(x > g3))

—16(F(g1,(x)) = §)I(x < gap(mp)) I (z > g5) — 4l(2 < g5)

+8sgn(a — mp) F(gar(me) = (3= 1 < a5)) (4 = gmiies I f(gz,r<x2>>dF<x2>)]

All these influence functions are bounded. Figure 3 shows the influence functions of the
left and right tail weight measures for the standard gaussian distribution Gy, for the right

skewed G50 and for the logistic distribution with density function

e—.r

f(l"):m-

We use the logistic distribution here instead of any Gy distribution because its density
function can be explicitly formulated. The logistic distribution is symmetric around zero
and has fatter tails than the standard gaussian distribution. It will also be considered in
Section 4 where its density is plotted in Figure 4. We see that the influence functions of the
QW alternatives are step functions, whereas the influence functions of the MC alternatives
are continuous, except in ¢; for LMC and g3 for RMC. They can be seen as smoothed versions

of the QW alternatives.
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Fig. 3. Influence functions of the left and right tail weight measures for the standard gaussian
distribution (upper), for Go 5o (middle) and for the logistic distribution (lower).

3.8  Asymptotic variance
If an estimator T is asymptotically normal at a distribution F, its asymptotic variance
(3.3)

V(T, F) [11] is given by
V(T,F) = / [F(z,T, F)2dF(z).
12



For the QW tail weight measures we have the following result:

Theorem 6 Let F' = & (the standard normal distribution), then the QW alternatives are

asymptotically normal, i.e.

V(QW, — QW) —p N(0, 08y,

with asymptotic variances 07 gy o125 = Trow(osts) = 2-23 and 07 gw 095 = Trow(0.15) =

3.71.

The asymptotic normality of the MC based measures has not been proven yet, but we
constructed QQ-plots based on 1000 samples of size 1000 which suggest their asymptotic
normal behavior. Further on we assume for all measures the validity of the asymptotic
normality, such that we may calculate V (T, F') from (3.3). Using numerical integration we

obtain the values listed in Table 1 for the G, G950 and the logistic distribution.

Goo G0,570 Logistic

)

LQW(0.125) 223 239 217
RQW(0.875) 223 202  2.17
LQW(0.25) 3.71 381  3.68
RQW(0.75) 3.71 358  3.68
LMC 262 263  2.60

RMC 2.62  2.55 2.60

Table 1
Asymptotic variances at the standard normal Gg distribution, at the Gg50 distribution and at

the logistic distribution.
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4 Finite-sample behavior
4.1 Performance at uncontaminated distributions

As in the sequel we will mainly consider the finite-sample versions of the proposed measures,

we will from now on omit the subscript n in their abbreviation (e.g. LMC,, is written as

LMC).

First we conducted a similar study as in [9]. We considered 24 symmetric distributions: the
standard normal distribution N(0,1) (= Gp), the standard logistic distribution, the Student
t-distribution with n = 1,2, 4,6, 8, 10 degrees of freedom; the Tukey gh-distribution with g =
0,h = 0.05,0.10,0.15,0.20, 0.25, 0.30; the Tukey Lambda distribution with A\ = 10,7,4,2,1
and the Unbounded Johnson distribution with parameters v = 0 and § = 3,2.5,2,1.5, 1.
Note that the Tukey Lambda distribution [12] with parameter A (say TL(\)) is defined as:

y = X052 )\ 2 g
Y = Logistic A =0

with X ~ Uniform(0,1). TL(1) corresponds with the uniform distribution on [-1,1], whereas
TL(2) is uniformly distributed on [-0.5,0.5]. The Unbounded Johnson distribution [16] with
parameters v and § (say SU(~,9)) is given by:

with X ~ N(—7, 5z). Nonparametric density estimates of all these 24 distributions are drawn

in Figure 4. In each box we consider a group of distributions with increasing tail weight.

We considered the classical kurtosis by, the right tail weight measures RQW (0.875), RQW(0.75)
and RMC and the measure of peakedness P which was recently proposed in [25]. It is defined

as:
Q(0.875) — Q(0.125)

Q(0.75) — Q(0.25)

hence it is like the QW alternatives only defined on certain quantiles of the data. Its break-

down value is 12.5% just as for LMC, RMC, LQW(0.25) and RQW(0.75). Although P can be

pP—
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Densities of the Logistic, Normal and Student distribution Densities of the Tukey's gh-distributions with g=0

Densities of the Tukey Lambda Distributions Densities of the Unbounded Johnson Distributions

TL(10) ——  sU0:3.0)

SU(0,25)
————— SU(0,2.0)
w --- su©.15)
——- sU©,10)

Fig. 4. Nonparametric density estimates of 24 symmetric distributions.

defined on any distribution, it specifically measures peakedness for symmetric distributions.

Note that Schmid and Trede [25] also introduced

Q(0.975) — Q(0.025)
Q(0.875) — Q(0.125)

as a measure of fat tails. However, due to its low breakdown value of 2.5% we did not include
it in our comparison. We also did not have to consider our left tail weight measures as we
now only focus on symmetric distributions. Next, we computed the empirical power of the
Shapiro-Wilk test at each of the 24 symmetric distributions based on 1000 samples of size 20.
The Shapiro-Wilk test [26] is a well-known test for normality which has a high power against
long- or short-tailed distributions. We thus expect that tail weight measures will adequately
detect non-normality if they differ a lot (in absolute value) from their value at the normal
distribution at distributions where Shapiro-Wilk attains high power. Table 2 lists for the 24
distributions the resulting empirical power values of the Shapiro-Wilk test together with the

average absolute deviation of the measure at the given distribution compared to its value at
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the normal distribution. Figure 5 shows the scatter plots of the values found in Table 2 for b,
and RMC. Figures of P, RQW(0.875) and RQW(0.75) are comparable to that of RMC. It can
be seen that at the Tukey Lambda Distribution with A = 10 the power of the Shapiro-Wilk
test is very high but the kurtosis is hardly different from 3. This problem does not occur
with any of the robust measures. On the contrary they clearly detect the non-normality of

the TL-distributions.

Note that also the test proposed in [4] is very powerful to detect normality but it is also not
robust as it is based on moments of the data. Hence, we did not include this test (among

many others) in our comparison.

power by P RQW(0.875) RQW(0.75) RMC

N(0,1) 0.051 0 0 0 0 0
TL(4) 0.029  0.553  0.170 0.048 0.062 0.052
SU(0,3.0) 0.073  0.529  0.027 0.027 0.016 0.019
SU(0,2.5) 0.089  0.821  0.038 0.039 0.022 0.027
GH(0,0.05) 0.094  0.820  0.038 0.037 0.021 0.026
Student(10)  0.095  1.002  0.040 0.039 0.022 0.028
Logistic(0,1) ~ 0.109  1.197  0.065 0.061 0.035 0.044
Student(8) 0.117  1.472  0.049 0.049 0.027 0.034
SU(0,2.0) 0.127  1.492  0.061 0.058 0.034 0.041
Student(6) 0.148  2.843  0.068 0.067 0.037 0.047
GH(0,0.10) 0.156  2.506  0.076 0.072 0.041 0.051
TL(1) 0.192  1.200 1.206 0.249 0.145 0.200
TL(2) 0.195  1.200  0.206 0.249 0.145 0.199
SU(0,1.5) 0.217  4.161  0.110 0.099 0.058 0.071
GH(0,0.15) 0.245  6.742  0.114 0.105 0.061 0.074
Student (4) 0.251 oo 0.109 0.103 0.591 0.073
GH(0,0.20) 0.319  19.39  0.154 0.136 0.080 0.096
TL(7) 0.338  0.879  1.236 0.369 0.310 0.321
GH(0,0.25) 0.375  60.09  0.195 0.165 0.098 0.117
SU(0,1.0) 0.407  30.36  0.251 0.197 0.121 0.142
GH(0,0.30) 0.452  144.2  0.236 0.193 0.115 0.137
Student(2) 0.553 oo 0.258 0.214 0.125 0.149
TL(10) 0.806  2.383  2.957 0.545 0.481 0.485
Student (1) 0.872 oo 0.709 0.418 0.269 0.300

Table 2
FEmpirical power of the Shapiro-Wilk test at 24 symmetric distributions together with the average
absolute deviation of the different tail weight measures compared to their values at the normal

distribution.
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Fig. 5. Scatter plots of the average absolute deviation of (a) the kurtosis by and (b) the RMC from
their value at the normal distribution measured at 24 symmetric distributions, against the power
of the Shapiro-Wilk test.

Another way of testing the performance of the proposed measures at uncontaminated distri-
butions is by using goodness-of-fit tests. Assume that we want to test whether the data are
sampled from a certain distribution G' or whether they come from a distribution with longer

tails. We could then formulate the null hypothesis as

Hy:w(F) =w(G)

(4.1)
Hy:w(F) > w(G)
with w any tail weight measure. Under Hj it holds that
n— w(G
o= =G N0 1), (4.2)
V(w,G)

The p-value (significance) of this test then equals p = P(Z > z) = 1 — ®(z). We considered
the null hypothesis (4.1) for the normal distribution G = Gy and a skewed distribution
G = Gosp. As alternative distributions, we used the Gy and Gosy distributions with
h ranging from 0 tot 0.3. For the test of normality we also included the Tukey Lambda
distribution with A = 5.2 because it has a kurtosis 7, = 3. From these distributions, 10000
samples of size n = 100 and n = 1000 were drawn. The results are summarized in Tables 3
and 4 by computing the fraction of the 10000 samples on which the null hypothesis (4.1) was

rejected in favor of the alternative at the 5% significance level. This is an approximation of
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n = 100 n = 1000

Go,0.0 Go,0.1 Go,0.2 Go,0.3 TL(5.2) Go,0.0 Go,0.1 Go,0.2 Go,0.3 TL(5.2)

SW 0.052 0.456 0.828 0.962 0.469 0.052 0.999 1.000 1.000 1.000
bo 0.059 0.619 0.910 0.981 0.023 0.058 1.000 1.000 1.000 0.009
P 0.035 0.083 0.173 0.298 0.673 0.040 0.370 0.825 0.980 1.000
LQW(0.125) 0.029 0.086 0.183 0.308 0.341 0.042 0.448 0.890 0.992 0.995
RQW (0.875) 0.028 0.083 0.182 0.311 0.343 0.042 0.445 0.891 0.992 0.992
LQW(0.25) 0.034 0.054 0.080 0.114 0.210 0.047 0.166 0.379 0.612 0.885
RQW (0.75) 0.034 0.055 0.081 0.115 0.199 0.047 0.162 0.374 0.599 0.880
LMC 0.033 0.069 0.118 0.182 0.266 0.046 0.264 0.607 0.855 0.961
RMC 0.029 0.065 0.120 0.182 0.259 0.048 0.261 0.608 0.848 0.959

Table 3
Fraction of 10000 samples of different data sizes n from several distributions G/, on which the null

hypothesis Hp : w(F') = w(Go o) was rejected at the 5% significance level.

n = 100 n = 1000

Go.5,00  Go.5,0.1 Go.5,02  Go.s5,03  Gos,00  Goss01 Go.5,02  Go.5,0.3

SW - - - - - - - -

by 0.001 0.020 0.075 0.154 0.020 0.388 0.814 0.962
P 0.036 0.091 0.159 0.259 0.043 0.296 0.723 0.946
LQW(0.125) 0.041 0.122 0.267 0.430 0.050 0.588 0.967 0.999
RQW(0.875) 0.015 0.039 0.084 0.161 0.029 0.271 0.716 0.936
LQW (0.25) 0.044 0.066 0.112 0.147 0.051 0.204 0.470 0.740
RQW(0.75) 0.032 0.047 0.059 0.094 0.048 0.125 0.290 0.487
LMC 0.042 0.095 0.182 0.267 0.050 0.387 0.790 0.963
RMC 0.026 0.051 0.078 0.135 0.046 0.184 0.442 0.689

Table 4

Fraction of 10000 samples of different data sizes n from several distributions G, on which the null
hypothesis Hp : w(F') = w(Go5,0) was rejected at the 5% significance level.

the power of the goodness-of-fit test against several alternative hypotheses. We also added
the Shapiro-Wilk test (SW) which is a two-sided test of normality, together with the test
(4.2) based on w = by and on w = P. The asymptotic variances of by and P are respectively

24 and 2.80 at G and 3.6.10* and 3.98 at Gy 50.

In the columns Gop and Goso we expect to find the nominal level a = 5%. As the other
columns satisfy the alternative hypothesis, the reported values should be as close to 1 as
possible. We clearly observe an increasing trend as h increases. The SW test adequately

detects deviations from normality, but it cannot be applied to the skewed distributions
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Gos,n- The test based on the kurtosis by is powerful to test normality, but it fails at the
TL(5.2) distribution. This is due to the fact that v, = 3 at T'L(5.2), hence it can not be
distinguished from the normal distribution. To test for the skewed G 5 against other skewed
distributions, we see that b, is very conservative at n = 100. Of our six proposed measures,
LQW(0.125) and RQW(0.875) are superior in almost all situations, followed by LMC and
RMC. The measures LQW(0.25) and RQW(0.75) are clearly the most conservatives. The
power of the P measure at symmetric distributions is comparable with that of LQW(0.125)
and RQW(0.875), whereas at the asymmetric G5, P behaves similar to LMC. The results
being much better for n = 1000 than for n = 100, we see that the power of these robust tests
is rather low. This could be improved by constructing a test which is not solely based on a
tail weight measure, but also on a robust measure of skewness. This is the idea behind the
Jarque-Bera statistic [2] based on the classical skewness and kurtosis and the test statistics
developed in [18]. We are currently investigating this approach for the quantile and the

medcouple measures of skewness and tail weight.

Note that it is also possible to construct tables consisting of critical values for different sample
sizes n. Hereby it suffices to replace the asymptotic variance V(w, Gy ) with nV,(w, G,p),
with V,, the finite-sample variance of w. This variance can be approximated through extensive
simulations, as e.g. done in [25]. We have done this for the situations of Tables 3 and 4, but
we found no impressive improvements. Hence we prefer to work with the asymptotic variance

which does not depend on the sample size.

4.2 Performance at contaminated distributions

We now compare the robustness of the tail weight measures using contaminated G, dis-
tributions. To this end, we generated 1000 samples of size n = 1000 from Gy (symmetric
distributions) and from G5 (asymmetric distributions) with A ranging from 0 to 0.3 and
computed the uncontaminated value of the measures by averaging the estimates over these
samples. Next, contaminated samples were created by taking samples of size 1000(1 — ¢),
and adding a normal sample N (a,c? = 0.1) of size 1000 with a = 40 (right contamination),
a = —40 (left contamination) and a = 0 (central contamination), for ¢ = 0.05. Figure 6

shows the differences between the average estimate at these contaminated samples and the
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value at the uncontaminated samples for the right tail weight measures. The figures for the

left tail weight measures were similar and are therefore not included.
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Fig. 6. Right tail weight difference between right contaminated (upper), left contaminated (middle)

and central contaminated (lower) samples and uncontaminated samples, with 5% contamination.

In all figures, the bias caused by the outliers remains rather stable for increasing h. From the
middle pictures we see that the right tail measures are hardly influenced by left contamina-

tion. As we would expect, LQW(0.25) and RQW(0.75) are the most robust against several
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n = 100 n = 1000

symmetric 0% 1% 2% 4% 0% 1% 2% 4%

SW 0.052 0.456 0.669 0.879 0.052 0.994 1.000 1.000
bo 0.059 0.507 0.730 0.917 0.058 0.996 1.000 1.000
P 0.035 0.038 0.040 0.051 0.040 0.051 0.063 0.093

LQW(0.125) 0.029 0.034 0.035 0.047 0.042 0.063 0.075 0.132
RQW (0.875) 0.028 0.033 0.038 0.043 0.042 0.058 0.082 0.128

LQW (0.25) 0.034 0.034 0.033 0.042 0.047 0.053 0.055 0.072

RQW(0.75) 0.034 0.035 0.039 0.042 0.047 0.059 0.057 0.069
LMC 0.033 0.032 0.033 0.043 0.046 0.056 0.065 0.094
RMC 0.029 0.035 0.035 0.044 0.048 0.052 0.070 0.093

Table 5
Fraction of 10000 samples of different data sizes n on which the null hypothesis of normality was
rejected at the 5% significance level. The samples are drawn from a normal distribution with varying

percentage of symmetric contamination.

types of contamination, followed by LMC and RMC. Again we thus see that LMC and RMC
make a good compromise between the more adequate LQW(0.125) and RQW(0.875) and
the more robust LQW(0.25) and RQW(0.75).

Let us now investigate how the goodness-of-fit tests are effected by outliers. As been done
in [25] we report in Tables 5, 6 and 7 the proportion of rejections of the null hypothesis of
normality (¢ = 0,h = 0) for various fractions ¢ of contaminated data. We tested the null
hypothesis on 10000 samples of size 100 and 1000 at the 5% significance level. Outliers were
generated from a N (0, 5) distribution, yielding symmetric contamination, or from a N(0,0.1),

which is central contamination, or from a N(40,0.1) distribution (right contamination).

As could be seen in Tables 5, 6 and 7 the power of the SW and by test are heavily influenced
by adding contamination. This effect is smaller when adding contamination with small vari-
ance in the center of the distribution. In this situation, the P test performs worse than the
QW and MC alternatives, which is not surprising as P measures peakedness. Also at right
contamination P is more sensitive than our left tail weight measures. Here we see that the
right tail weight measures perform not very well. It thus seems that comparing the results of
a test based on a left and right tail weight measure gives more information. It remains true

that the MC alternatives can be considered as a good compromise for the QW alternatives.
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n = 100 n = 1000

central 0% 1% 2% 4% 0% 1% 2% 4%

SW 0.052 0.053 0.050 0.061 0.052 0.057 0.079 0.156
bo 0.059 0.066 0.071 0.089 0.058 0.087 0.117 0.197
P 0.035 0.040 0.050 0.071 0.040 0.068 0.101 0.196

LQW(0.125) 0.029 0.034 0.031 0.039 0.042 0.041 0.046 0.055
RQW (0.875) 0.028 0.030 0.031 0.041 0.042 0.046 0.048 0.058
LQW (0.25) 0.034 0.033 0.034 0.033 0.047 0.043 0.046 0.044
RQW(0.75) 0.034 0.031 0.035 0.035 0.047 0.044 0.044 0.042
LMC 0.033 0.033 0.031 0.036 0.046 0.043 0.055 0.056

RMC 0.029 0.028 0.033 0.035 0.048 0.044 0.051 0.055

Table 6
Fraction of 10000 samples of different data sizes n on which the null hypothesis of normality was
rejected at the 5% significance level. The samples are drawn from a normal distribution with varying

percentage of central contamination.

n = 100 n = 1000
right 0% 1% 2% 4% 0% 1% 2% 4%
SW 0.052  1.000 1.000 1.000 0.052 1.000 1.000  1.000
by 0.059  1.000 1.000 1.000 0.058 1.000 1.000  1.000
P 0.035 0.041 0.046 0.060 0.040 0.058 0.077  0.160

LQW(0.125) 0.029 0.029 0.030 0.029 0.042 0.039 0.038 0.030
RQW (0.875) 0.028 0.042 0.054 0.127 0.042 0.106 0.236 0.816
LQW(0.25) 0.034 0.033 0.033 0.035 0.047 0.044 0.038 0.042
RQW (0.75) 0.034 0.043 0.044 0.057 0.047 0.062 0.089 0.187
LMC 0.033 0.031 0.030 0.030 0.046 0.039 0.038 0.034

RMC 0.029 0.043 0.048 0.085 0.048 0.078 0.141 0.393

Table 7
Fraction of 10000 samples of different data sizes n on which the null hypothesis of normality was
rejected at the 5% significance level. The samples are drawn from a normal distribution with varying

percentage of right contamination.

5 Examples

Example 1.
The stars data set [23] contains the light intensity and the surface temperature of 47 stars
in the direction of Cygnus. A scatter plot of the data and the robust LTS regression line [22]

are shown in Figure 7(a). In regression, it is important to check normality of the residuals.
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When a robust regression method is applied, it is sufficient that all residuals except those
from the outlying observations are normally distributed. Figure 7(b) and Figure 7(c) contain
the normal QQ-plot and the boxplot of the LTS residuals, from which five clear outliers are
visible. It is known that the four largest residuals correspond with giant stars. The sixth
observation that seems to deviate from the linear trend in the normal quantile plot is rather
a borderline case with a standardized LTS residual of 3.47. Table 8 shows that the SW
test and the by test lead to very different conclusions whether or not these five outliers are
included in the data. The same conclusion holds for RQW(0.875) and LQW(0.125) which is
due to their low breakdown point of 12.5%. All the other robust tests, including P, do not
reject the normality assumption, even in the presence of several outliers. We should be careful
in interpreting these results as this data set is very small and consequently the robust tests
are known to be very conservative. But still, this example shows again the non-robustness

of the SW and the by test.

]

auaniies

(a) (b) (c)

Fig. 7. The Stars data: (a) Scatter plot with LTS regression line; (b) normal QQ-plot of the residuals;
(¢) boxplot of the residuals.

Example 2.

The baseball data [21] consists of 162 major league baseball players who achieved true free
agency. This means that the player could sell his services to the highest bidding team. A
player is expected to handle in two possible directions. Or he plays badly in the year of his
free agency, because he is unhappy with his current team and he will play much better in

the next year. Or he pushes his performance in his free agency year in order to get to a
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SW ba P LQW(0.125) RQW(0.875) LQW(0.25) RQW(0.75) LMC RMC

stars + 0.000 0.000 0.571 0.013 0.004 0.490 0.366 0.271 0.199
stars — 0.622 0.375 0.622 0.193 0.734 0.308 0.672 0.228 0.669
baseball + - 0.000 0.074 0.892 0.165 0.697 0.107 0.695 0.134
baseball — - 0.848 0.427 0.981 0.480 0.699 0.189 0.706 0.206
procter + - - 0.765 0.468 0.551 0.355 0.634 0.944 0.739
procter — - - 0.722 0.404 0.578 0.457 0.659 0.987 0.805

Table 8

Significance of the two-sided goodness-of-fit tests to the normal distribution (stars), to the x3 dis-
tribution (baseball) and to the Student(3) distribution (procter) with (+) and without (-) outliers.
better team, but then he will play less well the next year. Here, we wanted to test whether
the batting average (hits per at bat) at the free agency year and at the next year is bivariate

normally distributed. Therefore we computed the robust distances given by

in which 2 and ¥ are the Minimum Covariance Estimator (MCD) estimates of location
and scatter [22] and (.)" stands for matrix transpose. If the data follow a bivariate normal
distribution, these robust distances are approximately 3 distributed. On the 3 based QQ-
plot of Figure 8 we notice two prominent outliers. With these outliers included, the b, test
rejects the null hypothesis, but it clearly supports the null hypothesis when they are removed.
The robust tests based on our tail weight measures are barely influenced by the outliers and
always accept Hy. Only the p-value of RQW(0.875) changes considerably, but the conclusion
remains the same. Also P is rather sensitive to the outliers. At the 7.5% significance level, it
even rejects the bivariate normality. Note that we cannot consider SW here, as it can only

be used to test normality.

qqqqqqqqq

Fig. 8. The Baseball data: x3 based QQ-plot of the robust distances.

Example 3.
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From Datastream we collected the daily logarithmic returns of the Procter & Gamble stock
from January 2000 to December 2003, leading to a univariate data set consisting of 1004
values. From the Student(3) based QQ-plot of Figure 9, we could believe these data to be
likewise distributed, apart from one very abnormal observation. This observation is noted
on 7 March 2000, the day that Procter & Gamble has lost 40 billion of US Dollars due to a
profit warning. All the robust tests do not reject the null hypothesis, even with the extreme
value included. Moreover, they have the advantage that they can be performed to test the
goodness-of-fit of distributions without finite fourth moments, such as the Student(3). On

the contrary, the by test cannot be applied here.

,,,,,,,,,,,

Fig. 9. The Procter & Gamble data: Student(3) based QQ-plot.

6 Conclusion

In this paper we have proposed several tail weight measures, based on robust measures of
skewness. We considered left and right tail weight measures to make them applicable on
asymmetric distributions. All of them follow the anti-skewness ordering of MacGillivray and
Balanda [17], making them intuitively correct tail weight measures. Moreover they do not

depend on moments of the data.

We have shown that the measures are robust against outlying values. They all have a posi-
tive breakdown value and a bounded influence function. Except in the median, the influence
function of the MC alternatives is continuous, while the QW alternatives have a stepwise
influence function. Small perturbations may then lead to larger differences. Regarding the
breakdown value, the LQW(0.25), RQW(0.75), LMC and RMC measures are preferable be-

cause of their breakdown value of 12.5%. This was confirmed with finite-sample simulations.
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At a bunch of symmetric distributions, we found that the robust tests are more adequate to
detect non-normality. Regarding some goodness-of-fit tests, LQW(0.125) and RQW(0.875)
appeared to be preferable, followed by LMC and RMC. In comparison with the commonly
used Shapiro-Wilk test of normality or a test based on the classical kurtosis, the proposed
measures show less power, but they are much more capable to handle some outlying values.
In practice, we therefore recommend to perform both a robust and a non-robust test. If
they lead to contradictory conclusions, this can be due to the sensitivity of the non-robust
test towards outliers, or due to the conservative behavior of the robust test. In that case, a

further investigation of the data is required.

Finally, the goodness-of-fit test proposed by Schmid and Trede [25] gives results which are
comparable with the QW and MC alternatives. But this test assumes inherently a symmetric
distribution and it is more sensitive to central contamination. Moreover by considering a left
and a right tail measures separately, we are able to perform separate tests on each tail of

the distribution. This can provide additional insight in the shape of the data.

When we compare the QW and MC tail weight measures, we observe that the MC alterna-
tives make a good compromise between robustness towards outlying values and adequately
measuring tail weight. Moreover because of their low O(nlog(n)) computation time and their
lack of any parameter p or ¢, we recommend LMC and RMC to use in practice. In our future
work we will investigate how the goodness-of-fit test can be improved by considering the

joint distribution of a robust tail weight measure and a robust skewness estimator.

Software
Source code to calculate all the mentioned measures in Matlab or S-plus and their asymptotic
variances in Mathematica can be downloaded from http://www.agoras.ua.ac.be/ and

http://www.wis.kuleuven.ac.be/stat/robust.html.

Appendix

Proof of Theorem 1

For simplicity, we will assume that n is divisible by 4, for other values of n the proof is
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similar.

First, we prove that ! (RMC,; X,,) < 1/n([n/8]|+1). By location invariance, assume w.l.o.g.
that the third quartile g3(X,) = 0. Moreover, let RMC(X,) > 0 by symmetry. We will
construct a contaminated sample X, by replacing (?8} + 1 data points from X,, such that
the RMC becomes arbitrarily large, thus RMC(X/) > B for any RMC(X,) < B < 1. To
contaminate our sample, we shift the [n/8] + 1 (= n — [Tn/8] + 1) largest values of X, by
a constant k > 2max |z;|/(1 — B). (The notation [z] stands for the largest integer smaller
or equal to z.) Now, ¢3(X)) = ¢3(X,), the sample median m, (X)) = m,(X,) and for all

m, < x; < g, we have that

s _n ™
h(mi,x;) _ h(x;,z;) for j = 51, [g] -1
742; for j = [%], ST

By definition of k, we obtain that h(z;,2}) > B for each j > [7n/8]. Since i runs over n/4
values, there are at least n/4([n/8] + 1) kernels larger than B. We assumed that X, is in

general position and that n is divisible by 4, hence the RMC is computed as the median over

n?/16 values. It follows that RMC, (X)) > B.

It remains to show that X (RMC,,; X,,) > 1/n([n/8] —1). Replace k < [n/8] —1 data points
by arbitrary values ;. We need to show that RM C(X],) does not depend on the contaminated
data, and thus its absolute value should remain smaller than 1. The RM C(X)) is based upon
the n/2 of the 2/ to the right of the median m/, = m,, (X! ). Denote the third quartile of X/
by ¢4, then there are a original data points lying in (m/,, ¢4] and b original data points larger

than or equal to ¢; with

[%] + 2 < min{a, b} and max{a,b} <

~3

Also, it is clear that a +b > n/2 — [n/8] + 2 = [3n/8] + 2, such that the number of uncon-
taminated expressions h(z;,z;) contributing to RMC(X)) is ab > a([3n/8] + 2 — a). It is
easy to verify that this lower bound is strictly larger than [(n?/16 + 1) /2], hence RMC(X])

is obtained as the median of one or two uncontaminated kernels.

Proof of Theorem 2

27



Let the contaminated distribution of F' be F. = (1 — ¢)F + €A, and the corresponding

quantile function Q. = F.*. Then, we can write

IF (e, LQW(p), F) = © [QE“

de

Because [ F(z,Q(p), F) = d%Qs(p)‘(E:O), simple calculus yields the given formula.

Proof of Theorem 3

Similar to the proof of Theorem 2.

Proof of Theorem 4
First, we rewrite (2.1) for a contaminated distribution F. = (1 — e)F +eA,. Let LMC. =
LMC(F.),m. = F-'(0.5) and q. = F-'(0.25), then the following equation holds:

1 Me e To + X1 — 2¢. )
— = [|——————— < LMC, | dF. dF; .
32 /qs /700 ( To — I1 - (1‘1) (xQ)

Note that the conditions

— 2q.
_W—2q§LMC’a’ 1 < (e, g < o <My, —1<LMC. <1
To — X1

are equivalent to

:1:2(—LMC€ — 1) + 2q5
- 1—LMC. ’

T g < 19 <M, -1 <LMC. <1

We now introduce the functions

v(—=LMC. — 1) + 2¢.

9w e) == e
(0.2 _VLMC 1) — 20,
90 =T T T MC

which for ¢ = 0 collapse with g;; and g¢o; defined in (3.1) and (3.2). With these notations,

we obtain
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32 /qm Fo(g1(22,€))dFe(2)

me

= (1 —e)F 4 A, (g1(x2,6))d[(1 —e)F 4+ eA,] (22)

qe

(1=26) [ Flgr(wn,e))dF () ¢ [ Flgr(ws,€))dd ()

qe Qe

te / " Au(gr (2, €))dF () + O(2). (6.1)

qe

To compute [F(z, LMC, F) = £ LMC(F.)|(=p we derive equality (6.1) with respect to ¢,
and let ¢ — 0. Since the terms in €2 vanish, we have to derive the first three terms only,

denoted by T ., To . and T;,.

9 9 .
i T [(1 —2¢) /q F(gl(xg,s))dF(xg)} -
— qu Fg1(22))dF () + (,i/; F(g1 (2, €))dF (22) - (6.2)

By definition of LM Cp, the first term in (6.2) equals —1/32, whereas Leibnitz’ rule yields

o Floiten enap()

qe (e=0)
me O , 0
[ P 0)5-a1(@2,e)  dF(@) + Flgi(me,0))F (mp)5-m.
ar < (e=0) € le=0)
, 0
+ Flgi(qr,0))F'(qr) -6
Oe (e=0)
Calculus yields
9 (29.€) 2 —2)IF(x, LMCp,F) + 2IF(z,q1, F)(—LMCp + 1)
8591 3:2,8 (EZO) - (—LMCF + 1)2
hence
9 1 me 2(qn — w2)
5l =T 4 I[F(z, LMCy, F) /q o+ T ) (2)
me - f(gia(x2)) 1
4 2IF(z,q1, F) /q CNIO AF (@) = T @)IF (g, F)
+ F(g1i(mp)) f(mp)IF(z, mp, F). (6.3)

The second term 75, in equation (6.1) has partial derivative
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_ 665 [g /qm F<gl<x2,g))dAm(x2)}

(e=0)
= [ Flgi(z, ))dn(x2)

qe (e=0)
= Flgri(@)[I(z > q) = I(x > mp)] (6.4)

whereas for the third term 75, we obtain

:/ EAx gl 132, )dF(xQ)

_ /m (& < gi(2,€))dF (a5)

(e=0) Yt (e=0) e (e=0)
qms I(zy < go(x,€))dF (x2) )
_ / P e > go(, N (g < go( 2))AF (12)
e (e=0)
" I(go(z, me)dF (zy
[ L) > me)dE |,
=1(g2(x) <mp)l(x < q1) [F(gz,l(if)) — ﬂ + I(g24(x) > mF)i
= 1w > gualme) 1 < @) [Floa@) = | + 1w < gabme)) . (65)

Combining equations (6.1), (6.3), (6.4), and (6.5) and using the fact that

HW(LMCy) = 16 :F 2f(g1.(2)) <<_L?\14;,in 1)2> dF (z5)

and
0.25 — [($ < ql)

flq)

finally leads to the influence function given in Theorem 4.

IF(z,q, F) =

Proof of Theorem 5
Similar to the Proof of Theorem 4.

Proof of Theorem 6
The proof is similar as in [25]. For 0 < p; < ... < pp < 1 and F' = & the sample quantiles

are asymptotically normal, i.e. N(0,3) with typical element in the covariance matrix ¥ =
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(Uij>i,j:1,...,k given by

5 — Pl = 1))
Y ¢(xpi)¢(xpj)

for i < j and ¢ denoting the density of the standard normal distribution (Serfling, 1980).

Let k=4and h: IR* — IR : (x1, 29, 23) — (23+2; —225) (23 —2,) " with partial derivatives
h/() = (hl(),hg(),hg()) where h1(> = 2(%3 — ,IQ)(SL’g — l’1>_2, hg() = —2(1'3 — Il)_l and

h3(.) = 2(z2 — x1)(z3 — 1) 2. Using the delta method we arrive at:

V(QW, — QW) —p N(0, h'Sh),

where h has to be evaluated at the p; quantiles of the corresponding quantiles of the QW

alternative. Numerical calculations of h'3h give the results in the Theorem.
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