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It is often assumed that to compute a robust estimator on n data values one needs at least n storage elements (contrary to the
sample average, that may be calculated with an updating mechanism). This is one of the main reasons why robust estimators
are seldom used for large data sets and why they are not included in most statistical packages. We introduce a new estimator
that takes up little storage space, investigate its statistical properties, and provide an example on real-time curve “averaging”
in a medical context. The remedian with base b proceeds by computing medians of groups of b observations, and then medians
of these medians, until only a single estimate remains. This method merely needs k arrays of size b (where n = b*), so the
total storage is O(log n) for fixed b or, alternatively, O(n'*) for fixed k. Its storage economy makes it useful for robust
estimation in large data bases, for real-time engineering applications in which the data themselves are not stored, and for
resistant “‘averaging” of curves or images. The method is equivariant for monotone transformations. Optimal choices of b with
respect to storage and finite-sample breakdown are derived. The remedian is shown to be a consistent estimator of the population

U L
medaidn, and

it converges at a nonstandard rate to a median-stable distribution.
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1. INTRODUCTION

In spite of a growing awareness of the dangers posed
by outliers, many statistical packages still restrict them-
selves to the sample average as a summary value of n data
points, rather than include the sample median as well. In
many scientific disciplines, alternatives to the average are
not even considered. One of the main reasons is that the
sample average can easily be computed with an updating
mechanism, so only a single pass through the data is nec-
essary. For instance, the following FORTRAN lines may
be used:

DO10I=1,N
10 SUM = SUM + ENTER(])
AVERA = SUM/N

where ENTER is a function that reads, records, generates,
or otherwise accesses the ith observation (for instance, by
looking it up in a large data base residing on an external
device). Therefore, it is never necessary to store the data
in central memory, so software vendors can rightly claim
that their packages can cope with 100,000 observations. It
is commonly thought that all robust estimators would need
to store at least the data, so the resulting storage would
be essentially O(n) or more. In many applications O(n)
storage is infeasible, especially when a lot of estimations
has to be carried out simultaneously, as in the case of
averaging sequences of curves or images with many pixels,
or in real-time engineering applications where the data are
not stored.

To remedy this problem, we propose a new robust es-
timator that can also be computed by means of a single-
pass updating mechanism, without having to store the ob-
servations. Let us assume that n = b*, where b and k are
integers (the case where 7 is not of this form will be treated

* Peter J. Rousseeuw is Professor, Vrije Universiteit Brussel, Vesal-
iuslaan 24, B-2520 Edegem, Belgium. Gilbert W. Bassett, Jr., is Pro-
fessor, Department of Economics, University of Illinois at Chicago, IL
60680. The authors are grateful to Bill Eddy and John Tukey for pro-
viding information on related methods. Thanks also go to the editor,
associate editor, and referees for useful suggestions.

in Sec. 7). The remedian with base b proceeds by com-
puting medians of groups of b observations, yielding b* !
estimates on which this procedure is iterated, and so on,
until only a single estimate remains. When implemented
properly, this method merely needs k arrays of size b that
are continuously reused. Figure 1 illustrates the remedian
with base 11 and exponent 4. The data enter at the top,
and array 1 is filled with the first 11 observations. Then
the median of these 11 observations is stored in the first
element of array 2, and array 1 is used again for the second
group of 11 observations, the median of which will be put
in the second position of array 2. After some time array
2 is full too, and its median is stored in the first position
of array 3, and so on. When 11* 14,641 data values
have passed by, array 4 is complete and its median be-
comes the final estimate. This method uses only 44 storage
positions, and its speed is of the same order of magnitude
as that of the ordinary average.

In general, the remedian with base b and exponent k
merely needs bk storage spaces for sample size n = b*.
(We call b the base by analogy to positional number sys-
tems. We could take b = 10, but we prefer odd b because
then the medians are easier to handle.) The basic idea of
the remedian is quite natural, since both of us arrived at
it independently.

The remedian could easily be incorporated in software
packages: By means of just 15 arrays of 11 real numbers
each (or a 15 X 11 matrix) one would be able to process
as many as 11 numbers, which ought to be sufficient for
all applications. Figure 2 shows a FORTRAN implemen-
tation of the remedian corresponding to Figure 1.

The remedian is affine equivariant, because it trans-
forms well when all observations x; are replaced by cx; +
d, where c and d are arbitrary constants. Like the sample
median, it is even equivariant with respect to any mono-
tone transformation of the x;, such as a power function or
a logarithm. (The data need not even be numbers at all!)
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Figure 1. Mechanism of the Remedian With Base 11 and Exponent
4, Using 44 Storage Spaces for a Data Set of Size n = 11* = 14,641.

On the other hand, the remedian is not invariant with
respect to permutations of the observations, which appears
to be the price for its low storage. It can be seen as an
order statistic with random rank, for which the distribution
of the ranks does not depend on the original distribution
of the x; (see Sec. 4). Looking at the rank distribution, it
can be verified that the remedian is nearly permutation
invariant.

Sections 3 and 4 discuss some possible choices of b and
k from the perspectives of storage economy and robust-
ness. In Sections 5 and 6 we show that the remedian is a
consistent estimator of the underlying population median,
and that it converges at a nonstandard rate to a limiting
distribution that is close to a Gaussian law. In Section 7
we look at some extensions and alternative approaches.

2. APPLICATIONS TO AVERAGING

Suppose we want to obtain a certain curve correspond-
ing to a physical phenomenon. A curve can be registered
by means of a list of its function values x(¢) at equally
spaced arguments ¢ (usually ¢ represents time). Because
the observed values of x(¢) are subject to noise one repeats
the experiment several times, yielding n curves in all, so
the data are of the form

{xi(t):t=1,..., T} fori=1,...,n (2.1)

One wants to combine the n curves to estimate the true
underlying shape. The classical approach is averaging,
yielding the curve

oy T,

x(t) = —rlzi x:(1), t=1,.. (2.2)

i=1
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This, however, assumes Gaussian noise and no outliers!
The averaging technique is very common in engineering
and medicine. For instance, averaging is built into many
special-purpose instruments used in hospitals [e.g., the
microprocessor-based average recorders in Pauwels, Vo-
geleer, Clement, Rousseeuw, and Kaufman (1982) and
Trau et al. (1983)].

Usually T and n are quite large, so one cannot store all
of the observed curves in central memory. This precludes
calculation of the “median curve”

median x,(¢), t=1,..

i=1,...n

o, T, (2.3)
as well as many other robust summaries. We propose to
compute the remedian instead, because it is a robust sin-
gle-pass method.

The program of Figure 2 can be easily adapted to pro-
duce the remedian curve, by replacing the arrays Al, A2,
A3, and A4 of length 11 by matrices with 11 rows and T
columns. In this way the total storage becomes 44T, whereas
the plain median would have needed 14,6417 positions.

Let us consider a medical example. The electroretina-
gram (ERG) is used in ophthalmology to examine disor-
ders of the visual system. When the eye is exposed to a
white flash of light, it develops a small electric potential.
The ERG curve shows the evolution of this evoked po-
tential (in microvolts) as a function of time (in millisec-
onds). The bottom curve in Figure 3b is a standard ERG
of a healthy patient (from Trau et al. 1983). The important
features are the four peaks (denoted by a, b, OP;, and
OP,) and in particular their ¢ coordinates, which are used
for medical diagnosis.

When the ERG curve is recorded only once, the noise
typically dominates the signal so that no peak can be found.
The current solution is to record many curves by repeating
the stimulus flash of light, and then to average them. The
average curve is often deformed and difficult to interpret,
however, because of a high amount of contamination
caused by electrical interference, involuntary eye move-
ments, and other artifacts.

It is quite feasible to replace the averaging routine in

cc A PROGRAM FOR THE REMEDIAN
CC  —mmmmmmmmmmm e —m e
DIMENSION A1(11),A2(11),A3(11),A4(11)
DO 40 M=1,11
DO 30 L=1,11
DO 20 K=1,11
DO 10 J=1,11
I=I+1

10 Al(J)=ENTER(I)

20 A2(K)=FMED(Al)

30 A3(L)=FMED(A2)

40 A4 (M)=FMED(A3)
REMED=FMED (A4)
WRITE(*,*)REMED
STOP
END

Figure 2. Small Program Yielding the Remedian With Base 11 and
Exponent 4. Here, ENTER is a function that reads or otherwise accesses
the ith observation, and FMED returns the median of an array of 11
numbers.
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the recording instrument by the remedian, because the
latter is equally fast and does not need too much storage.
To verify if this replacement is worthwhile, computer sim-
ulations were performed in which both the average and
the remedian were calculated for a bundle of curves, some
of which were contaminated. The basic curve was the stan-
dard ERG of Figure 3b, measured at T = 320 time units.
Figure 3a contains n = 81 curves (in ophthalmology more
curves are used, but this would make the display over-
crowded). The curves were generated as follows: With
probability .7, curve i is the basic ERG plus some Gaussian
noise with modest scale. With probability .1, the x(¢) val-
ues are multiplied by a random factor greater than 1. With
probability .2, the curve models a response at half the
standard speed, again with magnified x(¢) values.

The upper curve in Figure 3b is the average of the ERG
curves in Figure 3a. It has been greatly affected by the
contamination, which caused a substantial upward shift.
What is worse, the average has one peak too many, ren-
dering medical diagnosis difficult. Averaging often pro-
duces results like this in actual clinical practice. On the

) xi(c) e,
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other hand, the 3* remedian lies near the original ERG
and is virtually undamaged by the contamination.

Many other applications of robust averaging are possi-
ble—for instance, in spectroscopy. Median-type proce-
dures can also be used to estimate horizontal shifts be-
tween spectrograms (Rousseeuw 1987).

Averaging also occurs in image analysis. An image may
be described as a rectangular grid of pixels, each with a
corresponding number x(r, ¢) indicating its gray intensity.
When n images are read one after another, the data are

{x{r,c):r=1,...,Ryc=1,...,C}

fori =1,... (2.4)

’n’

where R is the number of rows and C is the number of
columns. In one application, a physicist recorded images
of a crystallographic lattice by means of an electron mi-
croscope, with R = 512, C = 512, and n = 10,000. Usually
such images are averaged to obtain a sharp result, but in
this case averaging did not work well because in many
images a part of the lattice was contaminated or even
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Figure 3. (a) Bundle of Simulated ERG Curves, Some With Pure Gaussian Noise and Others With Various Kinds of Contamination. (b) Plot
With the Standard ERG (bottom curve), the Average of the Simulated ERG’s (upper curve), and Their Remedian (middle curve).
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destroyed by the radiation of the microscope itself. Com-
puting plain medians was not feasible because there were
nRC = 2,621,400,000 data values in all, which could not
be stored in central memory. One can, however, compute
the remedian image given by

remedian x;(r, c), r=1,...,R, ¢=1,...,C.

i=1,....n

(2.5)

The computation of remedian curves and images may
be speeded if one has access to parallel computing facili-
ties, because one could let each processor work on a dif-
ferent element. For instance, Hillis (1987, p. 87) described
how his 65,536-processor Connection Machine deals with
images of 256 X 256 pixels, by identifying each processor
with a single pixel.

3. STORAGE AND COMPUTATION TIME

For given n, which base b minimizes the remedian’s
storage? We can write the exponent k as a function of n
and b, yielding k = log,(n). Therefore, we have to min-
imize

Inr)

bk = b logy(n) = b in(b) (3.1
over all b, where In denotes the natural logarithm with
respect to e = 2.718 . . . . Note that In(n) is a constant,

so we have to minimize h(b) = b/In(b), which does not
depend on n. Only integer values of b are allowed, and
we find h(2) = 2.885, h(3) = 2.731, h(4) = 2.885, and
h(5) = 3.107, after which A is monotonically increasing,
although very slowly. Thus b = 3 gives the smallest total
storage, but even if we take another fixed value of b the
total storage is not necessarily much larger (for instance,
for b = 9 the total storage is increased by a constant factor
of 1.5, as seen in Table 1). We will show that the larger
the base, the more robust the estimator is. Therefore, the
relatively small gain in storage by taking b = 3 rather
than, say, b = 9 is not worthwhile, except if we want to
apply the method by hand.

We have seen that for a fixed value of b the storage is
O(log r). On the other hand, we can also keep k fixed;
then b = n'*, so the storage is bk = kn'* = O(n'*).
Table 1 contains the remedian with £ = 2, which needs
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the most storage but still looks economical compared with
the plain median (given by k = 1) in the last column.

Let us also consider the total computation time. It is
well known that the median of n numbers can be computed
in O(n) time (see Knuth 1973, p. 216). For the b* reme-
dian, we have to compute b*~! medians of b observations
at the first level, b*~? such medians at the second level,
and so on. The total time is thus proportional to

bk+bk—1+...+b=n<1+%+"'+5?1:T)'

(3.2)

If k is fixed then b increases and (3.2) becomes asymp-
totically equivalent to n, so the remedian has the same
speed as the usual median, with proportionality factor 1.
On the other hand, when b is fixed the exponent k& will
grow, so
1 + l + . 4 L — _.b_
b b1 b -1"

which implies that the computation time is again O(n),
but now the proportionality factor with respect to the me-
dian is b/(b — 1). The larger the base, the faster the
estimator will be.

The remedian could be calculated much faster by means
of parallel computing. The b*~! medians at the first level
could be computed simultaneously by different processors,
then followed by the b*~2 medians of the second level,
and so on, yielding a total time of bk. But then all of the
data would need to be stored, and the total space would
again be n. Note that parallel computing interchanges the
requirements of space and time in this case.

4. BREAKDOWN POINT

The finite-sample breakdown point of an estimator is
defined as the smallest fraction of the observations that
have to be replaced to carry the estimator over all bounds.
In this definition, both the configuration and the magni-
tude of the outliers can be chosen in the least favorable
way. The median has the best possible breakdown, be-
cause at least [n/2] observations have to be replaced to
carry it outside the range of the original data. (The “ceil-
ing” [q] is the nearest integer = q.) Therefore, the break-

Table 1. Total Storage Space and Finite-Sample Breakdown Point for
Different Versions of the Remedian

Remedian Remedian Remedian

(b =3) (b =29) tk = 2) Median (k = 1)

n Storage &n Storage &n Storage & Storage &n
9 6 44% 9 56% 6 44% 9 56%
81 12 20% 18 31% 18 31% 81 51%
729 18 9% 27 17% 54 27% 729 50%
6,561 24 4% 36 10% 162 26% 6,561 50%
59,049 30 2% 45 5% 486 25% 59,049 50%
531,441 36 1% 54 3% 1,458 25% 531,441 50%
4,782,969 42 0% 63 2% 4,374 25% 4,782,969 50%
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down point of the sample median equals [n/21/n, which
is the upper bound for all affine equivariant estimators
(see Rousseeuw and Leroy 1987, p. 185).

To break down the b* remedian we need at least [b/2]
new values in the last round (which is a b-median). In each
of the [b/2] corresponding cells at least [b/2] values
must be new, and so on. In all, we need to replace at least
[b/2]* observations. It is also easy to see that this number
of outliers is sufficient, provided they are put at the worst
possible positions. Therefore, we have proven that the
breakdown point of the remedian is

et = [bI21F/n = (Ib/21/b)*. (4.1)

This also entails an exact fit result: If at least n — [b/2]*
+ 1 observations are identical, then the remedian will
equal that value, no matter what the other observations
may be.

Section 3 shows that the smallest storage is obtained for
fixed b, but then the breakdown point will tend to 0 be-
cause [b/2]/b < 1 and k goes to infinity with n. This is
clearly visible in Table 1: For b = 3 (optimal storage) the
breakdown point goes to 0 as (3)*, whereas for b = 9 it
goes to 0 a little more slowly. The worst case is b = 2
(sample average) with breakdown point (3)* = 1/n, so
even a single outlier may spoil the estimate.

On the other hand, if we keep k fixed then [b/2]/b —
3 because now b tends to infinity, so the breakdown point
tends to (3)*. In Table 1 we see that the breakdown point
goes to 25% for the remedian with k = 2. This is the best
possible value because k = 2 for any remedian. There is
a trade-off between robustness and storage, as the higher
breakdown points require more storage space. But even
if we take the most robust version (k = 2) the storage is
still merely O(V'n), which is far less than that of the plain
median (k = 1).

The remedian provides an interesting paradox. For fixed
b = 3, its finite-sample breakdown point tends to 0% for
increasing n. On the other hand, Section 5 shows that the
remedian is a consistent estimator of the population me-
dian, which is a functional with a breakdown point of 50%!
The finite-sample breakdown point does not converge to
the asymptotic version because the finite-sample remedian
is not permutation invariant, and the least-favorable out-
lier patterns are very peculiar. To make a remedian break
down with just [6/2]* outliers, the outliers must be placed
in some particular subset of the indexes {1, . . . , n}. As-
suming that all sets of [5/2]* indexes are equally likely,
the probability of a breakdown subset goes to 0 very quickly
when # increases.

When b is odd, the remedian coincides with one of the
original observations. Unlike the plain median, this ob-
servation does not always have rank [n/2], but it may have
one of several ranks. The breakdown argument shows that
the smallest possible rank is exactly [b/2]¥, whereas the
largest possible rank is n — [b/2]* + 1. Moreover, if the
observations are iid with respect to a continuous distri-
bution function, all n! orderings of the data are equally
likely. Then we can even compute the probability that a
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particular rank will come out, by dividing the total number
of orderings yielding that remedian by n!. For instance,
for the 3? remedian the ranks 1, 2, 3, 7, 8, and 9 have
probability 0, because [3/2]*> = 4. We can also verify that
there are 77,760 orderings for which the remedian be-
comes the fourth order statistic, so the probability of rank
4 becomes 77,760/9! = 3/14 = .2143. This is also the
probability of rank 6. For rank 5, we similarly find 207, 360/
9! = 4/7 = .5714. Therefore, the remedian is re-
stricted to the middle ranks, with the largest probability
at the median itself.

5. CONSISTENCY

[V AP T2 PRI PRSIy AP i~ wmatdle
s Ap UC LIUCPCHUCIIL VLXCIVAUVLID Wil CUlLL-

mon distribution F. (Note that we do not need any sym-
metry!) Assume that the number of observations is n =
b*, where b is fixed and k = 1,2, . . .. The base b = 3
is assumed odd.

The sample median of b observations is denoted by 7.
The remedian with base b and exponent & is denoted by
T This estimate can be expressed recursively in terms
of the previous remedian estimates, which were based on
b*=1 observations:

Tbk = Tb(Tbk-l, e ey Tbk'l). (51)

Theorem 1. Assume that F has a continuous density f
that is strictly positive at Med(F), and let the base b = 3
be odd. Then the remedian T is consistent for Med(F)
when k — .

Proof. Denote the distribution function of the sample
median by G,(x). It is equal to the probability that at least
m + 1 of the b = 2m + 1 observations are less than x,
SO

T a¢ 5
Lot Xy, . ..

b

Go(x) = 2

j=m+1

(’j) (F(x)(1 = Fx)y. (5.2)

Therefore, we can write
Gy(x) = R,(F(x)), (5.3)
where R,(u) = 21.’=m+1 (®)u/(1 — u)*~’ is a monotone

j
function from [0, 1] onto [0, 1] for which R,(0) = 0, R,(3)

= %, and R,(1) = 1. When differentiating R,(x) most
terms vanish, yielding

b!
m! m!

Ry(u) = um(l — wym,

which is strictly increasing for u < 3 and strictly decreasing
for u = § because m = 1.

Let us denote the distribution function of the remedian
by G+(x). Since the remedian with n = b* is just the plain
median of b previous remedians by Equation (5.1), it fol-
lows that

Gp(x) = Ry(Gp-1(x)). (5.4)
The distribution G -1 can similarly be expressed in terms
of G,-2 and so on, all the way back to G,, which depends
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on F; hence
Gy(x) = Ry(R,(-+ Ry(F(x)))) = RP(F(x)), (5.5)

where R{® denotes the k-fold composition of the function
Rb.

Figure 4 illustrates how the recursion formula works.
The horizontal axis initially contains a value of F(x). The
curve is the plot of the function Ry, and it shows how F(x)
is mapped to G,(x), which is read on the vertical axis. To
find G2(x) one can put the G,(x) value on the horizontal
axis and again read up to the curve. An easier way is to
read from G,(x) over to the 45° line and then up to the
curve, as indicated in the figure. Repeating this process
generates all of the G+ values on the 45° line.

The consistency of the remedian follows directly from
(5.5) and the fact that R,(u) is strictly convex for u <
and strictly concave for u = . In Figure 4 we see that as
k — o the values of Gu(x) gravitate toward 1 for any
initial x value such that F(x) > 3. On the other side, the
values of G+(x) drift to 0 for any x such that F(x) < 3.
The probability that the remedian is outside a neighbor-
hood of the population median therefore tends to 0; hence
the remedian is consistent.

6. ASYMPTOTIC DISTRIBUTION

The following heuristic argument gives the remedian’s
convergence rate, which differs from »n"? and depends on
the choice of the base b.

Assume that Med(F) = 0. Differentiating (5.4) with
respect to x yields the density of the remedian at 0:

8+(0) = Ry(3)g(0) = (R5(3))*f(0) = BE£(0),
1
1
B, Gy
Gb(x)
1
E b
A
V ‘

0 L 1) 1

2

Figure 4. Plot of the Function R,, Which Recursively Determines the
Distribution of the Remedian.
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in which the positive constant g, is given by

(L) = 8 (L)
ﬁb:R”(z)“mm! (2) ‘

Therefore, g,+(0) is increasing like ff; hence to stabilize
the density it needs to be stretched horizontally by the
same scaling factor f§. This gives the correct convergence
rate, as will be confirmed by Theorem 2.

We can write the convergence rate in the usual form »°
by putting f§ = n’ and keeping in mind that n = b*. Thus

6 = In(B,)/In(b). (6.2)

For b = 3 this yields § = .369, whereas b = 11 gives
= .415. When b increases, the exponent J approaches 3;
indeed, the remedian then approaches the sample median
and its n!’? convergence rate.

(6.1)

Theorem 2. Under the conditions of Theorem 1,
BE(Ty — Med(F)) converges in law to an H, distribu-
tion with location 0 and scale parameter ¢(F) = 1/
{f(Med(F)) V2r}.

Proof. See the Appendix.

Theorem 2 shows that the limiting distribution only de-
pends on the base b and on the density f at Med(F). The
general H, distribution is denoted by H,(x; u, o), where
u and o are location and scale parameters. Here, u is
defined as the median of H,. The parameter o is most
conveniently defined in terms of the height of the density
at the median. For any distribution H with a density A(u)
at its median, define o(H) as 1/(h(z)V2r). With this
convention, the standard H, distribution H,(x; 0, 1) and
the standard Gaussian distribution ®(x) have densities
that are equal at 0.

For any distribution F with Med(F) = 0, Theorem 2
yields

Hy(x) = lim R{O(F(B5*x)), (6.3)

which can be used to evaluate H,(x) numerically. It turns
out that H,(x; 0, 1) is very close to ®(x), and already for
b = 3 they agree to three decimal places.
The H, distribution also satisfies the functional equation
H(x) = R,(H(x/Bs)), (6.4)
which defines the so-called median-stable laws. These laws
were previously considered by Osterreicher (1984). They
arise when considering the following question: For what
type of distribution will the median’s sampling distribution
be identical (except for scale) to the population distribu-
tion? The answer will be a law that under the remedian
is its own limit; this follows from (5.5). By Theorem 2, H,
is also the remedian limit law when sampling from non-
median-stable distributions. The same property holds for
the usual stable laws with regard to the sample average.
It is easy to see that H, is not a Gaussian distribution

itself, by noting that Gaussian distributions do not satisfy
6.4).
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7. EXTENSIONS AND RELATED APPROACHES

How should we proceed when the sample size # is less
than b*? The remedian algorithm then ends up with n,
numbers in the first array, n, numbers in the second array,
and n;, numbers in the last array, such that n = n; + nb
+ -+ + nb*'. For our final estimate we then compute
a weighted median in which the n, numbers in the first
array have weight 1, the n, numbers in the second array
have weight b, and the n, numbers in the last array have
weight b*~!. This final computation does not need much
storage because there are fewer than bk numbers and
they only have to be ranked in increasing order, after
which their weights must be added until the sum is at
least n/2.

To estimate the remedian’s sampling distribution (and
to obtain the associated confidence intervals) we can ex-
trapolate the asymptotic results of Section 6. Alterna-
tively, we could use the spread of the b values of the last
step (or the b? values of the previous step) to compute a
nonparametric confidence interval.

Instead of computing medians, one could also insert
other estimators in the b* scheme. In this way the same
storage bk is needed. For an M estimator with maximal
breakdown point, the recursive version also has break-
down point ([b/21/b)*. Recursive estimators are usually
different from their base generators, except for the sample
average and the sample extremes.

Essentially three kinds of low-storage robust estimators
have appeared in the literature. The first kind is based on
stochastic approximation (Englund, Holst, and Ruppert
1988; Holst 1985; Martin and Masreliez 1975; Tierney
1983). Tukey (1978) and Weide (1978) computed medians
of subsamples, followed by classical averaging. The third
approach (Pearl 1981) is based on trees, in which minima
and maxima are alternated at each level.

Like the remedian, none of these existing methods is
permutation invariant. The main advantages of the reme-
dian are its monotone equivariance and high breakdown
point. On the other hand, most of its competitors have a
lower variance, particularly those based on stochastic ap-
proximation. This is somewhat counterbalanced by the fact
that the stochastic approximation methods need reliable
starting values. A promising approach (proposed by an
associate editor) would be a hybrid estimator that starts
with the remedian and then switches to a stochastic ap-
proximation algorithm. If the switch were made after half
the data were processed, then the hybrid estimator would
have half the remedian’s breakdown point and at most
twice the asymptotic variance of the stochastic approxi-
mation estimator. Other choices of the change point are
possible, involving a compromise between good break-
down properties and accuracy.

APPENDIX: PROOF OF THEOREM 2

In this proof we assume that Med(F) = 0 without loss of
generality.

Denote the distribution of g Ty by L,(x) = R (F(B;*x)).
As F is continuously differentiable near 0 we can expand it in a
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Taylor series yielding F(8;*x) = 5 + f(0)f;*x(1 + 0,(1)), so
Li(x) = RPG + f(0)F:*x) + 0(1) (A.1)

because for all z > 0 and o > O such that § + z(1 + «) < 1we
have

1 1 1 «
ky | = k) | = K| = —_
R{ (2+z)ng <2+z(1 +a))ng <2+z> + >
The first inequality follows directly from R, being increasing.
For the second we note that

l+z—1 l+(1+)+a :
2 TP T i a2 A T YT TR \2)

Combining concavity of R, with R,(3) = } yields
efle ) e r(lss
2" "1+ 2
hence R,(3 + z(1 + @) =4 + (R,( + z) — £)(1 + «). Repeated
application of this result gives
RPG + z(1 + @) =3 + (RPGE + 2) — DA + ),
yielding the desired result because R{¥(3 + z) < 1 due to 5 +
z < 1. Similar inequalities can be proved for o < 0 as well as
for z < 0. By putting z = $;*f(0)x and a = 0,(1) Equation
(A.1) follows.
By (A.1) we may now restrict attention to the limit of
Ji(x) = RPG + Br*f(0)x) ask— .
For each x we know that J,(x) is in [0, 1] for sufficiently large
k. Indeed, for large kit holds that |, % f(0) x| < ,s0% + B;*f(0)x
belongs to [0, 1]. Applying R then keeps J,(x) in [0, 1].
We show that J,(x) converges for each x. Let x > 0 and write
Jean(x) = REDGE + B4 f(0)x)
= RP(R,G + Bi* ' f(0)x)).

Expanding R, around 3 gives

R,(3 + Bi*'f(0)x) = & + B,(1 — 46°)"B;* ' f(0)x,

where 0 < 0 < f;%'f(0)x and
(1 b! 1 1 "
Rh<z+9> “M(i”) [1- (z”))

1 m 1 m
2m s - —
2B, (2 + 0) (2 0)

Bl — 40y,
We restrict attention to large enough k for which f;*"'f(0)x <
3;hence 0 <1 — 460*> < 1. Then

Jen(x) = RPG + (1 — 409)"B:%f(0)x)

= RPG + B4f(0)x) = Ju(x).
The sequence J,(x) is bounded and monotonically decreasing
for large k; hence it converges to a value in [0, 1].

The location u of H, is 0 because H,(0) = lim,_. J,(0) =
lim,_. R§(}) = 3. For the scale parameter ¢ we compute H;(0)
= lim,_. J;(0) = lim,..(R;(3))*B5*f(0) = f(0); hence H, has
the same density at 0 as the original population F.

)

(1 1+
(S

Il

[Received August 1988. Revised April 1989.]

REFERENCES

Englund, J., Holst, U., and Ruppert, D. (1988), “Recursive M-Esti-
mators of Location and Scale for Dependent Sequences,” Scandina-
vian Journal of Statistics, 15, 147-159.

Hillis, W. D. (1987), “The Connection Machine,” Scientific American,



104

257, No. 6 (June), 86-93.

Holst, U. (1985), “Recursive Estimation of Quantiles,” in Contributions
to Probability and Statistics in Honour of G. Blom, eds. J. Lanke and
G. Lindgren, Sweden: Lund University, pp. 179-188.

Knuth, D. E. (1973), The Art of Computer Programming (Vol. 3), Read-
ing, MA: Addison-Wesley.

Martin, R. D., and Masreliez, C. J. (1975), “Robust Estimation via
Stochastic Approximation,” IEEE Transactions on Information The-

_ory, 21, 263-271.

Osterreicher, F. (1984), “On Median-Stable Laws,” unpublished paper
presented at the Oberwolfach meeting on robust statistics, Mathe-
matisches Forschungsinstitut Oberwolfach (West Germany), Septem-
ber.

Pauwels, H. P., Vogeleer, M., Clement, P. A. R., Rousseeuw, P. J., and
Kaufman, L. (1982), “Brainstem Electric Response Audiometry in
Newborns,” International Journal of Pediatric Otorhinolaryngology,
4, 317-323.

Pearl, J. (1981), “A Space-Efficient On-Line Method of Computing
Quantile Estimates,” Journal of Algorithms, 2, 164-177.

Journal of the American Statistical Association, March 1990

Rousseeuw, P. J. (1987), “An Application of L, to Astronomy,” in
Statistical Data Analysis Based on the L; Norm and Related Methods,
ed. Y. Dodge, Amsterdam: North-Holland, pp. 437-445.

Rousseeuw, P. J., and Leroy, A. M. (1987), Robust Regression and
Outlier Detection, New York: Wiley-Interscience.

Tierney, L. (1983), “A Space-Efficient Recursive Procedure for Esti-
mating a Quantile of an Unknown Distribution,” SIAM Journal on
Scientific and Statistical Computing, 4, 706-711.

Trau, R., Salu, P., Wisnia, K., Kaufman, L., Rousseeuw, P. J., and
Pierreux, A. (1983), “Simultaneous ERG-VER Recording,” Bulletin
of the Belgian Ophthalmological Society, 206, 61-67.

Tukey, J. W. (1978), “The Ninther: A Technique for Low-Effort Robust
(Resistant) Location in Large Samples,” in Contributions to Survey
Sampling and Applied Statistics in Honor of H. O. Hartley, ed. H. A.
David, New York: Academic Press, pp. 251-257.

Weide, B. (1978), “Space-Efficient On-Line Selection Algorithms,” in
Proceedings of Computer Science and Statistics: Eleventh Annual Sym-
posium on the Interface, Raleigh: North Carolina State University, pp.
308-311.



